• Barham, L. & Everett, D. Semiotics and the origin of language in the Lower Palaeolithic. J. Archaeol. Method Theory 28, 535–579 (2021).

    Article 

    Google Scholar
     

  • Hockett, C. F. The origin of speech. Sci. Am. 203, 88–97 (1960). A classic overview of the relationship between key features of human language and communication systems found in other species, with a focus on distinctive and shared properties.

    Article 

    Google Scholar
     

  • Jackendoff, R. & Pinker, S. The faculty of language: what’s special about it? Cognition 95, 201–236 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Hurford, J. R. Language in the Light of Evolution: Volume 1, The Origins of Meaning (Oxford Univ. Press, 2007).

  • Kirby, S., Cornish, H. & Smith, K. Cumulative cultural evolution in the laboratory: an experimental approach to the origins of structure in human language. Proc. Natl Acad. Sci. USA 105, 10681–10686 (2008). This behavioural investigation introduces an experimental paradigm based on iterated learning of artificial languages for studying the cultural evolution of language; the findings suggest that languages evolve to maximize their transmissibility by becoming easier to learn and more structured.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seyfarth, R. M. & Cheney, D. L. The Social Origins of Language (Princeton Univ. Press, 2018).

  • Gibson, E. et al. How efficiency shapes human language. Trends Cogn. Sci. 23, 389–407 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Chomsky, N. The Minimalist Program (MIT Press, 1995).

  • Carruthers, P. The cognitive functions of language. Behav. Brain Sci. 25, 657–674 (2002). This comprehensive review discusses diverse language-for-thought views and puts forward a specific proposal whereby language has a critical role in cross-domain integration.

    Article 
    PubMed 

    Google Scholar
     

  • Gentner, D. & Goldin-Meadow, S. Language in Mind: Advances in the Study of Language and Thought (MIT Press, 2003).

  • Majid, A., Bowerman, M., Kita, S., Haun, D. B. & Levinson, S. C. Can language restructure cognition? The case for space. Trends Cogn. Sci. 8, 108–114 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Vygotsky, L. S. Thought and Language (MIT Press, 2012).

  • Lupyan, G. The centrality of language in human cognition. Lang. Learn. 66, 516–553 (2016).

    Article 

    Google Scholar
     

  • Davidson, D. in Mind and Language (ed. Guttenplan, S.) 1975–1977 (Oxford Univ. Press, 1975).

  • Dummett, M. Origins of Analytical Philosophy (Harvard Univ. Press, 1994).

  • Gleitman, L. & Papafragou, A. in The Cambridge Handbook of Thinking and Reasoning (eds Holyoak, K. J. & Morrison, R. G.) 633–661 (Cambridge Univ. Press, 2005).

  • de Villiers, J. in Understanding Other Minds: Perspectives from Developmental Cognitive Neuroscience (eds Baron-Cohen, S. et al.) 83–123 (Oxford Univ. Press, 2000).

  • Gentner, D. in Language in Mind: Advances in the Study of Language and Thought (eds Gentner, D. & Goldin-Meadow, S.) 3–14 (MIT Press, 2003). This position piece articulates one version of a language-for-thought hypothesis, whereby human intelligence is due to a combination of our analogical reasoning ability, possession of symbolic representations, and the ability of relational language to improve analogical reasoning abilities.

  • Buller, D. J. Adapting Minds: Evolutionary Psychology and the Persistent Quest for Human Nature (MIT Press, 2005).

  • Gould, S. J. & Vrba, E. S. Exaptation—a missing term in the science of form. Paleobiology 8, 4–15 (1982).

    Article 

    Google Scholar
     

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). This article introduces a formal framework for systems of information transfer, with core concepts such as channel capacity, and lays a foundation for the field of information theory.

    Article 
    MathSciNet 

    Google Scholar
     

  • Goldberg, A. E. Constructions: A Construction Grammar Approach to Argument Structure (Univ. Chicago Press, 1995).

  • Jackendoff, R. Foundations of Language: Brain, Meaning, Grammar, Evolution (Oxford Univ. Press, 2002).

  • Geschwind, N. The organization of language and the brain: language disorders after brain damage help in elucidating the neural basis of verbal behavior. Science 170, 940–944 (1970).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Friederici, A. D. Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6, 78–84 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Bates, E. et al. Voxel-based lesion–symptom mapping. Nat. Neurosci. 6, 448–450 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagoort, P. The neurobiology of language beyond single-word processing. Science 366, 55–58 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedorenko, E., Ivanova, A. I. & Regev, T. I. The language network as a natural kind within the broader landscape of the human brain. Nat. Rev. Neurosci. 25, 289–312 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neville, H. J. et al. Cerebral organization for language in deaf and hearing subjects: biological constraints and effects of experience. Proc. Natl Acad. Sci. USA 95, 922–929 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fedorenko, E., Hsieh, P.-J., Nieto-Castañon, A., Whitfield-Gabrieli, S. & Kanwisher, N. A new method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. 104, 1177–1194 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vagharchakian, L., Dehaene-Lambertz, G., Pallier, C. & Dehaene, S. A temporal bottleneck in the language comprehension network. J. Neurosci. 32, 9089–9102 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Regev, M., Honey, C. J., Simony, E. & Hasson, U. Selective and invariant neural responses to spoken and written narratives. J. Neurosci. 33, 15978–15988 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. et al. Precision fMRI reveals that the language-selective network supports both phrase-structure building and lexical access during language production. Cereb. Cortex 33, 4384–4404 (2022).

    Article 
    PubMed Central 

    Google Scholar
     

  • Menenti, L., Gierhan, S. M. E., Segaert, K. & Hagoort, P. Shared language: overlap and segregation of the neuronal infrastructure for speaking and listening revealed by functional MRI. Psychol. Sci. 22, 1173–1182 (2011). This fMRI investigation establishes that language comprehension and language production draw on the same brain areas in the left frontal and temporal cortex.

    Article 
    PubMed 

    Google Scholar
     

  • Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pallier, C., Devauchelle, A. D. & Dehaene, S. Cortical representation of the constituent structure of sentences. Proc. Natl Acad. Sci. USA 108, 2522–2527 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bozic, M., Fonteneau, E., Su, L. & Marslen‐Wilson, W. D. Grammatical analysis as a distributed neurobiological function. Hum. Brain Mapp. 36, 1190–1201 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Rodd, J. M., Vitello, S., Woollams, A. M. & Adank, P. Localising semantic and syntactic processing in spoken and written language comprehension: an activation likelihood estimation meta-analysis. Brain Lang. 141, 89–102 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Blank, I., Balewski, Z., Mahowald, K. & Fedorenko, E. Syntactic processing is distributed across the language system. NeuroImage 127, 307–323 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Fedorenko, E. et al. Neural correlate of the construction of sentence meaning. Proc. Natl Acad. Sci. USA 113, E6256–E6262 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, M. J. et al. Neurophysiological dynamics of phrase-structure building during sentence processing. Proc. Natl Acad. Sci. USA 114, E3669–E3678 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fedorenko, E., Blank, I. A., Siegelman, M. & Mineroff, Z. Lack of selectivity for syntax relative to word meanings throughout the language network. Cognition 203, 104348 (2020). This fMRI investigation establishes that every part of the language network that is sensitive to syntactic structure building is also sensitive to word meanings and comprehensively reviews literature relevant to the syntax selectivity debate.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giglio, L., Ostarek, M. O., Weber, K. & Hagoort, P. Commonalities and asymmetries in the neurobiological infrastructure for language production and comprehension. Cereb. Cortex 32, 1405–1418 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Heilbron, M., Armeni, K., Schoffelen, J. M., Hagoort, P. & De Lange, F. P. A hierarchy of linguistic predictions during natural language comprehension. Proc. Natl Acad. Sci. USA 119, e2201968119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shain, C., Blank, I. A., Fedorenko, E., Gibson, E. & Schuler, W. Robust effects of working memory demand during naturalistic language comprehension in language-selective cortex. J. Neurosci. 42, 7412–7430 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desbordes, T. et al. Dimensionality and ramping: signatures of sentence integration in the dynamics of brains and deep language models. J. Neurosci. 43, 5350–5364 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shain, C. et al. Distributed sensitivity to syntax and semantics throughout the language network. J. Cogn. Neurosci. 22, 1–43 (2024). This fMRI investigation establishes distributed sensitivity to cognitive demands associated with lexical access, syntactic structure building and semantic composition across the language network.

  • Tuckute, G. et al. Driving and suppressing the human language network using large language models. Nat. Hum. Behav. 8, 544–561 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Gentner, D. Structure-mapping: a theoretical framework for analogy. Cogn. Sci. 7, 155–170 (1983).


    Google Scholar
     

  • Duncan, J. How Intelligence Happens (Yale Univ. Press, 2012).

  • Varley, R. A., Klessinger, N. J., Romanowski, C. A. & Siegal, M. Agrammatic but numerate. Proc. Natl Acad. Sci. USA 102, 3519–3524 (2005). Patients with acquired damage to the language network display aphasia and linguistic deficits (including severe grammatical difficulties) but perform at the level of neurotypical control participants on diverse numerical reasoning tasks.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klessinger, N., Szczerbinski, M. & Varley, R. Algebra in a man with severe aphasia. Neuropsychologia 45, 1642–1648 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Lecours, A. & Joanette, Y. Linguistic and other psychological aspects of paroxysmal aphasia. Brain and Language 10, 1–23 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kertesz, A. in Thought Without Language (ed. Weiskrantz, L.) 451–463 (Oxford Univ. Press, 1988).

  • Varley, R. & Siegal, M. Evidence for cognition without grammar from causal reasoning and ‘theory of mind’ in an agrammatic aphasic patient. Curr. Biol. 10, 723–726 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siegal, M., Varley, R. & Want, S. C. Mind over grammar: reasoning in aphasia and development. Trends Cogn. Sci. 5, 296–301 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varley, R. In Cognitive Bases of Science (eds Carruthers, P. et al.) 99–116 (Cambridge Univ. Press, 2002).

  • Woolgar, A., Duncan, J., Manes, F. & Fedorenko, E. Fluid intelligence is supported by the multiple-demand system not the language system. Nat. Hum. Behav. 2, 200–204 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dronkers, N. F., Ludy, C. A. & Redfern, B. B. Pragmatics in the absence of verbal language: descriptions of a severe aphasic and a language-deprived adult. J. Neurolinguistics 11, 179–190 (1998).

    Article 

    Google Scholar
     

  • Varley, R., Siegal, M. & Want, S. C. Severe impairment in grammar does not preclude theory of mind. Neurocase 7, 489–493 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Apperly, I. A., Samson, D., Carroll, N., Hussain, S. & Humphreys, G. Intact first-and second-order false belief reasoning in a patient with severely impaired grammar. Soc. Neurosci. 1, 334–348 (2006). A person with acquired damage to the language network and consequent aphasia exhibits linguistic deficits but performs at the level of neurotypical control participants on theory of mind tasks.

    Article 
    PubMed 

    Google Scholar
     

  • Willems, R. M., Benn, Y., Hagoort, P., Toni, I. & Varley, R. Communicating without a functioning language system: Implications for the role of language in mentalizing. Neuropsychologia 49, 3130–3135 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Bek, J., Blades, M., Siegal, M. & Varley, R. Language and spatial reorientation: evidence from severe aphasia. J. Exp. Psychol. 36, 646 (2010).


    Google Scholar
     

  • Caramazza, A., Berndt, R. S. & Brownell, H. H. The semantic deficit hypothesis: Perceptual parsing and object classification by aphasic patients. B. Lang. 15, 161–189 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Chertkow, H., Bub, D., Deaudon, C. & Whitehead, V. On the status of object concepts in aphasia. Brain Lang. 58, 203–232 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saygın, A. P., Wilson, S. M., Dronkers, N. F. & Bates, E. Action comprehension in aphasia: linguistic and non-linguistic deficits and their lesion correlates. Neuropsychologia 42, 1788–1804 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Jefferies, E. & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain 129, 2132–2147 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Dickey, M. W. & Warren, T. The influence of event-related knowledge on verb-argument processing in aphasia. Neuropsychologia 67, 63–81 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ivanova, A. A. et al. The language network is recruited but not required for nonverbal event semantics. Neurobiol. Lang. 2, 176–201 (2021). In this fMRI study, semantic processing of event pictures in neurotypical individuals engages the language network, but less than verbal descriptions of the same events; however, individuals with acquired damage to the language network and consequent aphasia perform at the level of neurotypical control participants on a non-verbal semantic task.

    Article 

    Google Scholar
     

  • Benn, Y. et al. The language network is not engaged in object categorization. Cereb. Cortex 33, 10380–10400 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varley, R. Reason without much language. Lang. Sci. 46, 232–244 (2014).

    Article 

    Google Scholar
     

  • Dehaene, S., Spelke, E., Pinel, P., Stanescu, R. & Tsivkin, S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science 284, 970–974 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hermer, L. & Spelke, E. Modularity and development: the case of spatial reorientation. Cognition 61, 195–232 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lupyan, G. Extracommunicative functions of language: verbal interference causes selective categorization impairments. Psychon. Bull. Rev. 16, 711–718 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Braga, R. M., DiNicola, L. M., Becker, H. C. & Buckner, R. L. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. J. Neurophysiol. 124, 1415–1448 (2020). This fMRI investigation of the language network establishes this network as one of the intrinsic large-scale networks in the human brain, distinct from nearby cognitive networks.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fedorenko, E. & Blank, I. A. Broca’s area is not a natural kind. Trends Cogn. Sci. 24, 270–284 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fedorenko, E., Behr, M. K. & Kanwisher, N. Functional specificity for high-level linguistic processing in the human brain. Proc. Natl Acad. Sci. USA 108, 16428–16433 (2011). This fMRI investigation finds that arithmetic addition, demanding executive function tasks and music processing do not engage the language areas, thus establishing their selectivity for linguistic input over non-linguistic inputs and tasks.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monti, M. M., Parsons, L. M. & Osherson, D. N. Thought beyond language: neural dissociation of algebra and natural language. Psychol. Sci. 23, 914–922 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Amalric, M. & Dehaene, S. A distinct cortical network for mathematical knowledge in the human brain. NeuroImage 189, 19–31 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Monti, M. M., Osherson, D. N., Martinez, M. J. & Parsons, L. M. Functional neuroanatomy of deductive inference: a language-independent distributed network. NeuroImage 37, 1005–1016 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Monti, M. M., Parsons, L. M. & Osherson, D. N. The boundaries of language and thought in deductive inference. Proc. Natl Acad. Sci. USA 106, 12554–12559 (2009). This fMRI investigation finds largely non-overlapping activations of brain regions to language processing and logical processing, thus establishing the selectivity of language areas for linguistic input over logic statements.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivanova, A. A. et al. Comprehension of computer code relies primarily on domain-general executive brain regions. eLife 9, e58906 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. F., Kim, J., Wilson, C. & Bedny, M. Computer code comprehension shares neural resources with formal logical inference in the fronto-parietal network. eLife 9, e59340 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paunov, A. M., Blank, I. A. & Fedorenko, E. Functionally distinct language and theory of mind networks are synchronized at rest and during language comprehension. J. Neurophysiol. 121, 1244–1265 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paunov, A. M. et al. Differential tracking of linguistic vs. mental state content in naturalistic stimuli by language and theory of mind (ToM) brain networks. Neurobiol. Lang. 3, 413–440 (2022).

    Article 

    Google Scholar
     

  • Shain, C., Paunov, A., Chen, X., Lipkin, B. & Fedorenko, E. No evidence of theory of mind reasoning in the human language network. Cereb. Cortex 33, 6299–6319 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sueoka, Y., Paunov, A., Ivanova, A., Blank, I. A. & Fedorenko, E. The language network reliably “tracks” naturalistic meaningful non-verbal stimuli. Neurobiol. Lang. https://doi.org/10.1162/nol_a_00135 (2024).

  • Piaget, J. The Language and Thought of the Child (Harcourt Brace, 1926).

  • Gentner, D. & Loewenstein, J. in Language, Literacy, and Cognitive Development: The Development and Consequences of Symbolic Communication (eds Amsel, E. & Byrnes, J. P.) 89–126 (Lawrence Erlbaum Associates, 2002).

  • Appleton, M. & Reddy, V. Teaching three year‐olds to pass false belief tests: a conversational approach. Soc. Dev. 5, 275–291 (1996).

    Article 

    Google Scholar
     

  • Slaughter, V. & Gopnik, A. Conceptual coherence in the child’s theory of mind: training children to understand belief. Child Dev. 67, 2967–2988 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiersche, K. J., Schettini, E., Li, J. & Saygin, Z. M. (2022). Functional dissociation of the language network and other cognition in early childhood. Preprint at bioRxiv https://doi.org/10.1101/2022.08.11.503597 (2023).

  • Hiersche, K. J. Functional Organization and Modularity of the Superior Temporal Lobe in Children. Masters thesis, The Ohio State University (2023).

  • Hall, W. C. What you don’t know can hurt you: the risk of language deprivation by impairing sign language development in deaf children. Matern. Child Health J. 21, 961–965 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hall, M. L., Hall, W. C. & Caselli, N. K. Deaf children need language, not (just) speech. First Lang. 39, 367–395 (2019).

    Article 

    Google Scholar
     

  • Bedny, M. & Saxe, R. Insights into the origins of knowledge from the cognitive neuroscience of blindness. Cogn. Neuropsychol. 29, 56–84 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Grand, G., Blank, I. A., Pereira, F. & Fedorenko, E. Semantic projection recovers rich human knowledge of multiple object features from word embeddings. Nat. Hum. Behav. 6, 975–987 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackendoff, R. How language helps us think. Pragmat. Cogn. 4, 1–34 (1996).

    Article 

    Google Scholar
     

  • Jackendoff. R. The User’s Guide to Meaning (MIT Press, 2012).

  • Curtiss, S. Genie: A Psycholinguistic Study of a Modern-day Wild Child (Academic Press, 1977).

  • Peterson, C. C. & Siegal, M. Representing inner worlds: theory of mind in autistic, deaf, and normal hearing children. Psychol. Sci. 10, 126–129 (1999).

    Article 

    Google Scholar
     

  • Richardson, H. et al. Reduced neural selectivity for mental states in deaf children with delayed exposure to sign language. Nat. Commun. 11, 3246 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spelke, E. S. What Babies Know: Core Knowledge and Composition, Vol. 1 (Oxford Univ. Press, 2022).

  • Cheney, D. L. & Seyfarth, R. M. How Monkeys See the World: Inside the Mind of Another Species (Univ. Chicago Press, 1990).

  • Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317, 1360–1366 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tomasello, M. & Herrmann, E. Ape and human cognition: what’s the difference? Curr. Dir. Psychol. Sci. 19, 3–8 (2010).

    Article 

    Google Scholar
     

  • Fischer, J. Monkeytalk: Inside the Worlds and Minds of Primates (Univ. Chicago Press, 2017).

  • Krupenye, C. & Call, J. Theory of mind in animals: current and future directions. Wiley Interdiscip. Rev. Cogn. Sci. 10, e1503 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Shimizu, T. Why can birds be so smart? Background, significance, and implications of the revised view of the avian brain. Comparat. Cogn. Behav. Rev. 4, 103–115 (2009).


    Google Scholar
     

  • Güntürkün, O. & Bugnyar, T. Cognition without cortex. Trends Cogn. Sci. 20, 291–303 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hart, B. L., Hart, L. A. & Pinter-Wollman, N. Large brains and cognition: where do elephants fit in? Neurosci. Biobehav. Rev. 32, 86–98 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Godfrey-Smith, P. Other Minds: The Octopus and the Evolution of Intelligent Life (William Collins, 2016).

  • Schnell, A. K., Amodio, P., Boeckle, M. & Clayton, N. S. How intelligent is a cephalopod? Lessons from comparative cognition. Biol. Rev. 96, 162–178 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gallistel, C. R. Prelinguistic thought. Lang. Learn. Dev. 7, 253–262 (2011).

    Article 

    Google Scholar
     

  • Fitch, W. T. Animal cognition and the evolution of human language: why we cannot focus solely on communication. Philos. Trans. R. Soc. B 375, 20190046 (2020).

    Article 

    Google Scholar
     

  • Yamada, J. E. & Marshall, J. C. Laura: A Case Study for the Modularity of Language (MIT Press, 1990).

  • Rondal, J. A. Exceptional Language Development in Down Syndrome (Cambridge Univ. Press, 1995).

  • Bellugi, U., Lichtenberger, L., Jones, W., Lai, Z. & St George, M. The neurocognitive profile of Williams syndrome: a complex pattern of strengths and weaknesses. J. Cogn. Neurosci. 12, 7–29 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Little, B. et al. Language in schizophrenia and aphasia: the relationship with non-verbal cognition and thought disorder. Cogn. Neuropsychiatry 24, 389–405 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mahowald, K. et al. Dissociating language and thought in large language models. Trends Cogn. Sci. 28, 517–540(2024).

  • Chomsky, N., Belleti, A. & Rizzi, L. in On Nature and Language (eds Belleti, A. & Rizzi, L.) 92–161 (Cambridge Univ. Press, 2002).

  • Schwartz, J. L., Boë, L. J., Vallée, N. & Abry, C. The dispersion–focalization theory of vowel systems. J. Phonetics 25, 255–286 (1997).

    Article 

    Google Scholar
     

  • Diehl, R. L. Acoustic and auditory phonetics: the adaptive design of speech sound systems. Philos. Trans. R. Soc. B 363, 965–978 (2008).

    Article 

    Google Scholar
     

  • Everett, C., Blasi, D. E. & Roberts, S. G. Climate, vocal folds, and tonal languages: Connecting the physiological and geographic dots. Proc. Natl Acad. Sci. USA 112, 1322–1327 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blasi, D. E. et al. Human sound systems are shaped by post-Neolithic changes in bite configuration. Science 363, eaav3218 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dautriche, I., Mahowald, K., Gibson, E., Christophe, A. & Piantadosi, S. T. Words cluster phonetically beyond phonotactic regularities. Cognition 163, 128–145 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Piantadosi, S. T., Tily, H. & Gibson, E. Word lengths are optimized for efficient communication. Proc. Natl Acad. Sci. USA 108, 3526–3529 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levelt, W. J. Speaking: From Intention to Articulation (MIT Press, 1993).

  • Kemp, C. & Regier, T. Kinship categories across languages reflect general communicative principles. Science 336, 1049–1054 (2012). This study provides a computational demonstration that the kinship systems across world’s languages trade off between simplicity and informativeness in a near-optimal way, and argue that these principles also characterize other category systems.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibson, E. et al. Color naming across languages reflects color use. Proc. Natl Acad. Sci. USA 114, 10785–10790 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaslavsky, N., Kemp, C., Regier, T. & Tishby, N. Efficient compression in color naming and its evolution. Proc. Natl Acad. Sci. USA 115, 7937–7942 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kemp, C., Gaby, A. & Regier, T. Season naming and the local environment. Proc. 41st Annual Meeting of the Cognitive Science Society 539–545 (2019).

  • Xu, Y., Liu, E. & Regier, T. Numeral systems across languages support efficient communication: From approximate numerosity to recursion. Open Mind 4, 57–70 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denić, M., Steinert-Threlkeld, S. & Szymanik, J. Complexity/informativeness trade-off in the domain of indefinite pronouns. Semant. Linguist. Theor. 30, 166–184 (2021).

    Article 

    Google Scholar
     

  • Mollica, F. et al. The forms and meanings of grammatical markers support efficient communication. Proc. Natl Acad. Sci. USA 118, e2025993118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Pol, I., Lodder, P., van Maanen, L., Steinert-Threlkeld, S. & Szymanik, J. Quantifiers satisfying semantic universals have shorter minimal description length. Cognition 232, 105150 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Clark, H. H. in Context in Language Learning and Language Understanding (eds Malmkj’r, K. & Williams, J.) 63–87) (Cambridge Univ. Press, 1998).

  • Winter, B., Perlman, M. & Majid, A. Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition 179, 213–220 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • von Humboldt, W. Uber die Verschiedenheit des Menschlichen Sprachbaues (1836).

  • Hurford, J. R. Linguistic Evolution Through Language Acquisition: Formal and Computational Models (ed. Briscoe, E.) 301–344 (Cambridge Univ. Press, 2002).

  • Smith, K., Brighton, H. & Kirby, S. Complex systems in language evolution: the cultural emergence of compositional structure. Adv. Complex Syst. 6, 537–558 (2003).

    Article 

    Google Scholar
     

  • Piantadosi, S. T. & Fedorenko, E. Infinitely productive language can arise from chance under communicative pressure. J. Lang. Evol. 2, 141–147 (2017).

    Article 

    Google Scholar
     

  • Gibson, E. Linguistic complexity: locality of syntactic dependencies. Cognition 68, 1–76 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, R. L., Vasishth, S. & Van Dyke, J. A. Computational principles of working memory in sentence comprehension. Trends Cogn. Sci. 10, 447–454 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. Dependency distance as a metric of language comprehension difficulty. J. Cogn. Sci. 9, 151–191 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Futrell, R., Mahowald, K. & Gibson, E. Large-scale evidence of dependency length minimization in 37 languages. Proc. Natl Acad. Sci. USA 112, 10336–10341 (2015). This investigation of syntactic dependency lengths across 37 diverse languages suggests that dependencies are predominantly local cross-linguistically, presumably because non-local dependencies are cognitively costly in both production and comprehension.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dryer, M. S. The Greenbergian word order correlations. Language 68, 81–138 (1992).

    Article 

    Google Scholar
     

  • Hahn, M., Jurafsky, D. & Futrell, R. Universals of word order reflect optimization of grammars for efficient communication. Proc. Natl Acad. Sci. USA 117, 2347–2353 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldin-Meadow, S., Wing, C. S., Özyürek, A. & Mylander, C. The natural order of events: how speakers of different languages represent events nonverbally. Proc. Natl Acad. Sci. USA 105, 9163–9168 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Senghas, A., Kita, S. & Ozyürek, A. Children creating core properties of language: evidence from an emerging sign language in Nicaragua. Science 305, 1779–1782 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sandler, W., Meir, I., Padden, C. & Aronoff, M. The emergence of grammar: systematic structure in a new language. Proc. Natl Acad. Sci. USA 102, 2661–2665 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson, E. et al. A noisy-channel account of crosslinguistic word-order variation. Psychol. Sci. 24, 1079–1088 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Levy, R. A noisy-channel model of human sentence comprehension under uncertain input. In Proc. Conference on Empirical Methods in Natural Language Processing 234–243 (2008).

  • Gibson, E., Bergen, L. & Piantadosi, S. T. Rational integration of noisy evidence and prior semantic expectations in sentence interpretation. Proc. Natl Acad. Sci. USA 110, 8051–8056 (2013). This behavioural investigation demonstrates that language comprehension is robust to noise: in the presence of corrupt linguistic input, listeners and readers rely on a combination of prior expectations about messages that are likely to be communicated and knowledge of how linguistic signals can get corrupted by noise.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Futrell, R., Levy, R. P. & Gibson, E. Dependency locality as an explanatory principle for word order. Language 96, 371–412 (2020).

    Article 

    Google Scholar
     

  • Hahn, M. & Xu, Y. Crosslinguistic word order variation reflects evolutionary pressures of dependency and information locality. Proc. Natl Acad. Sci. USA 119, e2122604119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahn, M., Futrell, R., Levy, R. & Gibson, E. A resource-rational model of human processing of recursive linguistic structure. Proc. Natl Acad. Sci. USA 119, e2122602119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piantadosi, S. T., Tily, H. & Gibson, E. The communicative function of ambiguity in language. Cognition 122, 280–291 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Quijada, J. A grammar of the Ithkuil language—introduction. ithkuil.net https://ithkuil.net/00_intro.html (accessed 27 February 2022).

  • Srinivasan, M. & Rabagliati, H. The implications of polysemy for theories of word learning. Child Dev. Perspect. 15, 148–153 (2021).

    Article 

    Google Scholar
     

  • Bizzi, E. Motor control revisited: a novel view. Curr. Trends Neurol. 10, 75–80 (2016).


    Google Scholar
     

  • Darwin, C. On the Origin of Species–A Facsimile of the First Edition (Harvard Univ. Press, 1964).

  • Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc. Natl Acad. Sci. USA 109, 10661–10668 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, L. T. The historical roots of our ecologic crisis. Science 155, 1203–1207 (1967).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

    Article 

    Google Scholar
     

  • Buckner, R. L. & Krienen, F. M. The evolution of distributed association networks in the human brain. Trends Cogn. Sci. 17, 648–665 (2013). This review presents the evidence for the disproportionate expansion of the association cortex relative to other brain areas in humans.

    Article 
    PubMed 

    Google Scholar
     

  • Duncan, J., Assem, M. & Shashidhara, S. Integrated intelligence from distributed brain activity. Trends Cogn. Sci. 24, 838–852 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saxe, R. & Kanwisher, N. People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind”. NeuroImage 19, 1835–1842 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deen, B. & Freiwald, W. A. Parallel systems for social and spatial reasoning within the cortical apex. Preprint at bioRxiv https://doi.org/10.1101/2021.09.23.461550 (2021).

  • Mitchell, D. J. et al. A putative multiple-demand system in the macaque brain. J. Neurosci. 36, 8574–8585 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantlon, J. & Piantadosi, S. Uniquely human intelligence arose from expanded information capacity. Nat. Rev. Psychol. 3, 275–293 (2024).

    Article 

    Google Scholar
     

  • Tomasello, M. The Cultural Origins of Human Cognition (Harvard Univ. Press, 2009).

  • Boyd, R., Richerson, P. J. & Henrich, J. The cultural niche: Why social learning is essential for human adaptation. Proc. Natl Acad. Sci. USA 108, 10918–10925 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henrich, J. The Secret of Our Success: How Culture is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter (Princeton Univ. Press, 2016).

  • Heyes, C. Cognitive Gadgets (Harvard Univ. Press, 2018).

  • Gumperz, J. J. & Levinson, S. C. (eds). Rethinking Linguistic Relativity (Cambridge Univ. Press, 1996).

  • Piaget, J. Language and Thought of the Child: Selected Works, Vol. 5 (Routledge, 2005).

  • Gleitman, L. R. & Papafragou, A. in Cambridge Handbook of Thinking and Reasoning (eds Holyoak, K. & Morrison, R.) 2nd edn (Oxford Univ. Press, 2016).

  • Fedorenko, E. & Varley, R. Language and thought are not the same thing: evidence from neuroimaging and neurological patients. Ann. NY Acad. Sci. 1369, 132–153 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gentner, D. Language as cognitive tool kit: How language supports relational thought. Am. Psychol. 71, 650 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Frank, M. C., Everett, D. L., Fedorenko, E. & Gibson, E. Number as a cognitive technology: Evidence from Pirahã language and cognition. Cognition 108, 819–824 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Wernicke, C. The aphasic symptom-complex: a psychological study on an anatomical basis. Arch. Neurol. 22, 280–282 (1869).

    Article 

    Google Scholar
     

  • Lichteim, L. On aphasia. Brain 7, 433–484 (1885).

    Article 

    Google Scholar
     

  • Poeppel, D., Emmorey, K., Hickok, G. & Pylkkänen, L. Towards a new neurobiology of language. J. Neurosci. 32, 14125–14131 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tremblay, P. & Dick, A. S. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang. 162, 60–71 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hillis, A. E. et al. Re‐examining the brain regions crucial for orchestrating speech articulation. Brain 127, 1479–1487 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Flinker, A. et al. Redefining the role of Broca’s area in speech. Proc. Natl Acad. Sci. USA 112, 2871–2875 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, M. A. et al. Functional segregation of cortical regions underlying speech timing and articulation. Neuron 89, 1187–1193 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guenther, F. H. Neural Control of Speech (MIT Press, 2016).

  • Basilakos, A., Smith, K. G., Fillmore, P., Fridriksson, J. & Fedorenko, E. Functional characterization of the human speech articulation network. Cereb. Cortex 28, 1816–1830 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Obleser, J., Zimmermann, J., Van Meter, J. & Rauschecker, J. P. Multiple stages of auditory speech perception reflected in event-related fMRI. Cereb. Cortex 17, 2251–2257 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Mesgarani, N., Cheung, C., Johnson, K. & Chang, E. F. Phonetic feature encoding in human superior temporal gyrus. Science 343, 1006–1010 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norman-Haignere, S., Kanwisher, N. G. & McDermott, J. H. Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron 88, 1281–1296 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Overath, T., McDermott, J., Zarate, J. & Poeppel, D. The cortical analysis of speech-specific temporal structure revealed by responses to sound quilts. Nat. Neurosci. 18, 903–911 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norman-Haignere, S. V. et al. A neural population selective for song in human auditory cortex. Curr. Biol. 32, 1470–1484.e12 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 8, 393–402 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friederici, A. D. The cortical language circuit: from auditory perception to sentence comprehension. Trends Cogn. Sci. 16, 262–268 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Wilson, S. M. et al. Recovery from aphasia in the first year after stroke. Brain 146, 1021–1039 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Radford, A. et al. Language models are unsupervised multitask learners. OpenAI blog 1, 9 (2019).

  • Jain, S. & Huth, A. Incorporating context into language encoding models for fMRI. in Proc. 32nd International Conf. Neural Information Processing Systems (eds Bengio, S. et al.) (Curran Associates, 2018).

  • Schrimpf, M. et al. The neural architecture of language: Integrative modeling converges on predictive processing. Proc. Natl Acad. Sci. USA 118, e2105646118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caucheteux, C. & King, J. R. Brains and algorithms partially converge in natural language processing. Commun. Biol. 5, 134 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstein, A. et al. Shared computational principles for language processing in humans and deep language models. Nat. Neurosci. 25, 369–380 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuckute, T., Kanwisher, N. & Fedorenko, E. Language in brains, minds, and machines. Annu. Rev. Neurosci. https://doi.org/10.1146/annurev-neuro-120623-101142 (2024).

  • Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leonard, M. K. et al. Large-scale single-neuron speech sound encoding across the depth of human cortex. Nature 626, 593–602 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fodor, J. A. The Language of Thought (Crowell, 1975).

  • Fodor, J. A. & Pylyshyn, Z. W. Connectionism and cognitive architecture: a critical analysis. Cognition 28, 3–71 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rule, J. S., Tenenbaum, J. B. & Piantadosi, S. T. The child as hacker. Trends Cogn. Sci. 24, 900–915 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quilty-Dunn, J., Porot, N. & Mandelbaum, E. The best game in town: the reemergence of the language-of-thought hypothesis across the cognitive sciences. Behav. Brain Sci. 46, e261 (2023).

    Article 

    Google Scholar
     

  • Rumelhart, D. E., McClelland, J. L. & PDP Research Group. Parallel Distributed Processing, Vol. 1: Explorations in the Microstructure of Cognition: Foundations (MIT Press, 1986).

  • Smolensky, P. & Legendre, G. The Harmonic Mind: From Neural Computation to Optimality–Theoretic Grammar Vol. 1: Cognitive Architecture (MIT Press, 2006).

  • Frankland, S. M. & Greene, J. D. Concepts and compositionality: in search of the brain’s language of thought. Annu. Rev. Psychol. 71, 273–303 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lake, B. M. & Baroni, M. Human-like systematic generalization through a meta-learning neural network. Nature 623, 115–121 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dehaene-Lambertz, G., Dehaene, S. & Hertz-Pannier, L. Functional neuroimaging of speech perception in infants. Science 298, 2013–2015 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pena, M. et al. Sounds and silence: an optical topography study of language recognition at birth. Proc. Natl Acad. Sci. USA 100, 11702–11705 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cristia, A., Minagawa, Y. & Dupoux, E. Responses to vocalizations and auditory controls in the human newborn brain. PLoS ONE 9, e115162 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link