• Koshland, D. E. Stereochemistry and the mechanism of enzymatic reactions. Biol. Rev. 28, 416–436 (1953).

    Article 
    CAS 

    Google Scholar
     

  • Nasseri, S. A., Betschart, L., Opaleva, D., Rahfeld, P. & Withers, S. G. A mechanism-based approach to screening metagenomic libraries for discovery of unconventional glycosidases. Angew. Chem. 130, 11529–11534 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wolfenden, R., Lu, X. & Young, G. Spontaneous hydrolysis of glycosides. J. Am. Chem. Soc. 120, 6814–6815 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Watts, A. G. et al. Trypanosoma cruzi trans-sialidase operates through a covalent sialyl-enzyme intermediate: tyrosine is the catalytic nucleophile. J. Am. Chem. Soc. 125, 7532–7533 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Vocadlo, D. J. & Withers, S. G. Detailed comparative analysis of the catalytic mechanisms of β-N-acetylglucosaminidases from families 3 and 20 of glycoside hydrolases. Biochemistry 44, 12809–12818 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Namchuk, M. N. & Withers, S. G. Mechanism of Agrobacterium β-glucosidase: kinetic analysis of the role of noncovalent enzyme/substrate interactions. Biochemistry 34, 16194–16202 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Drula, E. et al. The carbohydrate-active enzyme database: functions and literature. Nucleic Acids Res. 50, D571–D577 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yip, V. L. Y. & Withers, S. G. Family 4 glycosidases carry out efficient hydrolysis of thioglycosides by an α,β-elimination mechanism. Angew. Chem. Int. Ed. 45, 6179–6182 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Jongkees, S. A. K. & Withers, S. G. Glycoside cleavage by a new mechanism in unsaturated glucuronyl hydrolases. J. Am. Chem. Soc. 133, 19334–19337 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Rahfeld, P. et al. An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nat. Microbiol. 4, 1475–1485 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lorenz, P. & Eck, J. Metagenomics and industrial applications. Nat. Rev. Microbiol. 3, 510–516 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Viborg, A. H. et al. A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). J. Biol. Chem. 294, 15973–15986 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Hallgren, J. et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. Preprint at bioRxiv https://doi.org/10.1101/2022.04.08.487609 (2022).

  • Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liou, C. S. et al. A metabolic pathway for activation of dietary glucosinolates by a human gut symbiont. Cell 180, 717–728 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ravcheev, D. A., Godzik, A., Osterman, A. L. & Rodionov, D. A. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomics 14, 873 (2013).

    Article 

    Google Scholar
     

  • Liu, H. et al. Functional genetics of human gut commensal Bacteroides thetaiotaomicron reveals metabolic requirements for growth across environments. Cell Rep. 34, 108789 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yip, V. L. Y. et al. An unusual mechanism of glycoside hydrolysis involving redox and elimination steps by a family 4 β-glycosidase from Thermotoga maritima. J. Am. Chem. Soc. 126, 8354–8355 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Jäger, M., Hartmann, M., de Vries, J. G. & Minnaard, A. J. Catalytic regioselective oxidation of glycosides. Angew. Chemie Int. Ed. 52, 7809–7812 (2013).

    Article 

    Google Scholar
     

  • Morris, P. E., Hope, K. D. & Kiely, D. E. The isomeric composition of d-ribo-hexos-3-ulose (3-keto-d-glucose) in aqueous solution. J. Carbohydr. Chem. 8, 515–530 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Allouch, J. et al. The three-dimensional structures of two β-agarases. J. Biol. Chem. 278, 47171–47180 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Lemke, A., Kiderlen, A. F. & Kayser, O. Amphotericin B. Appl. Microbiol. Biotechnol. 68, 151–162 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Arsic, B. et al. 16-membered macrolide antibiotics: a review. Int. J. Antimicrob. Agents 51, 283–298 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Q. et al. Neriifolin from seeds of Cerbera manghas L. induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Fitoterapia 82, 735–741 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sugawara, K. et al. Elsamicins A and B, new antitumor antibiotics related to chartreusin. 2. Structures of elsamicins A and B. J. Org. Chem. 52, 996–1001 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Martens, E. C. et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 9, e1001221 (2011).

    Article 
    CAS 

    Google Scholar
     

  • van Beeumen, J. & de Ley, J. Hexopyranoside: cytochrome c oxidoreductase from Agrobacterium tumefaciens. Eur. J. Biochem. 6, 331–343 (1968).

    Article 

    Google Scholar
     

  • Takeuchi, M., Asano, N., Kameda, Y. & Matsui, K. Physiological role of glucoside 3-dehydrogenase and cytochrome c551 in the sugar oxidizing system of Flavobacterium saccharophilum. J. Biochem. 103, 938–943 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Bernaerts, M. J. & De Ley, J. Microbiological formation and preparation of 3-ketoglycosides from disaccharides. J. Gen. Microbiol. 22, 129–136 (1960).

    Article 
    CAS 

    Google Scholar
     

  • Grebner, E. E. & Feingold, D. S. d-Aldohexopyranoside dehydrogenase of Agrobacterium tumefaciens. Biochem. Biophys. Res. Commun. 19, 37–42 (1965).

    Article 
    CAS 

    Google Scholar
     

  • Hayano, K. & Fukui, S. Purification and properties of 3-ketosucrose-forming enzyme from the cells of Agrobacterium tumefaciens. J. Biol. Chem. 242, 3655–3672 (1967).

    Article 
    CAS 

    Google Scholar
     

  • Kuritani, Y. et al. Conversion of levoglucosan into glucose by the coordination of four enzymes through oxidation, elimination, hydration, and reduction. Sci. Rep. 10, 20066 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kaur, A. et al. Identification of levoglucosan degradation pathways in bacteria and sequence similarity network analysis. Arch. Microbiol. 205, 155 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Braune, A., Engst, W. & Blaut, M. Identification and functional expression of genes encoding flavonoid O– and C-glycosidases in intestinal bacteria. Environ. Microbiol. 18, 2117–2129 (2016).

    Article 
    CAS 

    Google Scholar
     

  • He, P. et al. Structural mechanism of a dual-functional enzyme DgpA/B/C as both a C-glycoside cleaving enzyme and an O– to C-glycoside isomerase. Acta Pharm. Sin. B 13, 246–255 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mori, T. et al. C-Glycoside metabolism in the gut and in nature: Identification, characterization, structural analyses and distribution of C-C bond-cleaving enzymes. Nat. Commun. 12, 6294 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zheng, S. et al. A newly isolated human intestinal bacterium strain capable of deglycosylating flavone C-glycosides and its functional properties. Microb. Cell Fact. 18, 94 (2019).

    Article 

    Google Scholar
     

  • Taborda, A. et al. Mechanistic insights into glycoside 3-oxidases involved in C-glycoside metabolism in soil microorganisms. Nat. Commun. 14, 7289 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Q. P. et al. Bacterial glycosidases for the production of universal red blood cells. Nat. Biotechnol. 25, 454–464 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Bell, A. et al. Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria. J. Biol. Chem. 295, 13724–13736 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kaur, A. et al. Widespread family of NAD-dependent sulfoquinovosidases at the gateway to sulfoquinovose catabolism. J. Am. Chem. Soc. 145, 28216–28223 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bitter, J. et al. Enzymatic β-elimination in natural product O– and C-glycoside deglycosylation. Nat. Commun. 14, 7123 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Armstrong, Z., Rahfeld, P. & Withers, S. G. Discovery of new glycosidases from metagenomic libraries. Methods Enzymol. 597, 3–23 (2017).

  • Chen, H.-M. et al. Synthesis and evaluation of sensitive coumarin-based fluorogenic substrates for discovery of α-N-acetyl galactosaminidases through droplet-based screening. Org. Biomol. Chem. 19, 789–793 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Klock, H. E., Koesema, E. J., Knuth, M. W. & Lesley, S. A. Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins Struct. Funct. Genet. 71, 982–994 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Barnhart, J. L. & Berk, R. N. Influence of paramagnetic ions and pH on proton NMR relaxation of biologic fluids. Invest. Radiol. 21, 132–136 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Agirre, J. et al. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr. D 79, 449–461 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tickle, I. J. et al. STARANISO (Global Phasing Ltd, 2018).

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 

    Google Scholar
     

  • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Agirre, J. et al. Privateer: software for the conformational validation of carbohydrate structures. Nat. Struct. Mol. Biol. 22, 833–834 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Landau, M. et al. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res. 33, W299–W302 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gucwa, M. et al. CMM—an enhanced platform for interactive validation of metal binding sites. Protein Sci. 32, e4525 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sonnenburg, E. D. et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell 141, 1241–1252 (2010).

    Article 
    CAS 

    Google Scholar
     



  • Source link