• Burns, S. P., Xing, D. & Shapley, R. M. Comparisons of the dynamics of local field potential and multiunit activity signals in macaque visual cortex. J. Neurosci. 30, 13739–13749 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Ahmadi, N., Constandinou, T. G. & Bouganis, C. S. Inferring entire spiking activity from local field potentials. Sci. Rep. 11, 19045 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tseng, H. A. & Han, X. Distinct spiking patterns of excitatory and inhibitory neurons and LFP oscillations in prefrontal cortex during sensory discrimination. Front. Physiol. 12, 618307 (2021).

    Article 

    Google Scholar
     

  • Cho, K. K. et al. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6+/− mice. Neuron 85, 1332–1343 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Helfrich, R. F. & Knight, R. T. Oscillatory dynamics of prefrontal cognitive control. Trends Cogn. Sci. 20, 916–930 (2016).

    Article 

    Google Scholar
     

  • Kamigaki, T. & Dan, Y. Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior. Nat. Neurosci. 20, 854–863 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Pinto, L. & Dan, Y. Cell-type-specific activity in prefrontal cortex during goal-directed behavior. Neuron 87, 437–450 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lagler, M. et al. Divisions of identified parvalbumin-expressing basket cells during working memory-guided decision making. Neuron 91, 1390–1401 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liebe, S., Hoerzer, G. M., Logothetis, N. K. & Rainer, G. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance. Nat. Neurosci. 15, 456–462 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D. & Miller, E. K. Synchronous oscillatory neural ensembles for rules in the prefrontal cortex. Neuron 76, 838–846 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hsieh, H. L., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Multiscale modeling and decoding algorithms for spike-field activity. J. Neural Eng. 16, 016018 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Fu, Z. et al. The geometry of domain-general performance monitoring in the human medial frontal cortex. Science 376, eabm9922 (2022). This study is an example of using Behnke–Fried electrodes to collect single neuron activity in large patient cohorts.

    Article 
    CAS 

    Google Scholar
     

  • Steinmetz, N. A., Koch, C., Harris, K. D. & Carandini, M. Challenges and opportunities for large-scale electrophysiology with Neuropixels probes. Curr. Opin. Neurobiol. 50, 92–100 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chung, J. E. et al. High-density single-unit human cortical recordings using the Neuropixels probe. Neuron 110, 2409–2421.e3 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Khanna, A. R. et al. Single-neuronal elements of speech production in humans. Nature 626, 603–610 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Leonard, M. K. et al. This study highlights use of Neuropixels for investigating columnar processing in human speech encoding. Nature 626, 593–602 (2024). This study highlights the use of Neuropixels probes for investigating columnar processing in human speech encoding.

    Article 
    CAS 

    Google Scholar
     

  • Trautmann, E. M. et al. Large-scale high-density brain-wide neural recording in nonhuman primates. Preprint at bioRxiv https://doi.org/10.1101/2023.02.01.526664 (2023).

  • Tischbirek, C. H. et al. In vivo functional mapping of a cortical column at single-neuron resolution. Cell Rep. 27, 1319–1326.e5 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tchoe, Y. et al. Human brain mapping with multithousand-channel PtNRGrids resolves spatiotemporal dynamics. Sci. Transl. Med. 14, eabj1441 (2022).

    Article 

    Google Scholar
     

  • Paulk, A. C. et al. Microscale physiological events on the human cortical surface. Cereb. Cortex 31, 3678–3700 (2021).

    Article 

    Google Scholar
     

  • Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using Neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022). Refs. 15 and 23 were among the first studies to demonstrate the use of Neuropixels probes in human cortex.

    Article 
    CAS 

    Google Scholar
     

  • Bugeon, S. et al. A transcriptomic axis predicts state modulation of cortical interneurons. Nature 607, 330–338 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pollen, A. A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017). This study applies next-generation single-cell RNA sequencing technologies to profile human cortical cell atlases in brain development.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285–7290 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015). This study introduces a key method in development of next-generation single-cell RNA sequencing technologies.

    Article 
    CAS 

    Google Scholar
     

  • Langlieb, J. et al. The molecular cytoarchitecture of the adult mouse brain. Nature 624, 333–342 (2023).

  • Yao, Z. et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 624, 317–332 (2023). This study uses single-cell RNA sequencing and spatial transcriptomics to map the entire mouse brain.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Siletti, K. et al. Transcriptomic diversity of cell types across the adult human brain. Science 382, eadd7046 (2023). This study provides an initial draft of a cell atlas of the human brain.

    Article 
    CAS 

    Google Scholar
     

  • Clark, I. C. et al. Microfluidics-free single-cell genomics with templated emulsification. Nat. Biotechnol. 41, 1557–1566 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021). This study is an example that highlights unique cell-type-specific transcriptomic and physiologic properties of human neurons compared to model systems.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, C. et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357, 600–604 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of human cortical development. Nature 598, 205–213 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, C. et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genomics 2, 100107 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gatto, L. et al. Initial recommendations for performing, benchmarking and reporting single-cell proteomics experiments. Nat. Methods 20, 375–386 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Alon, S. et al. Expansion sequencing: spatially precise in situ transcriptomics in intact biological systems. Science 371, eaax2656 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Niu, M. et al. Droplet-based transcriptome profiling of individual synapses. Nat. Biotechnol. 41, 1332–1344 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, H. What is a cell type and how to define it. Cell 185, 2739–2755 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fang, R. et al. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science 377, 56–62 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, D. et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article 

    Google Scholar
     

  • Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liharska, L. E. et al. A study of gene expression in the living human brain. Preprint at medRxiv https://doi.org/10.1101/2023.04.21.23288916 (2023).

  • Schneider, A. et al. Transcriptomic cell type structures in vivo neuronal activity across multiple timescales. Cell Rep. 42, 112318 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ting, J. T. et al. A robust ex vivo experimental platform for molecular-genetic dissection of adult human neocortical cell types and circuits. Sci. Rep. 8, 8407 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Beaulieu-Laroche, L. et al. Enhanced dendritic compartmentalization in human cortical neurons. Cell 175, 643–651.e14 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Moradi Chameh, H. et al. Diversity amongst human cortical pyramidal neurons revealed via their sag currents and frequency preferences. Nat. Commun. 12, 2497 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kalmbach, B. E. et al. h-Channels contribute to divergent intrinsic membrane properties of supragranular pyramidal neurons in human versus mouse cerebral cortex. Neuron 100, 1194–1208.e5 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Beaulieu-Laroche, L. et al. Allometric rules for mammalian cortical layer 5 neuron biophysics. Nature 600, 274–278 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Berto, S. et al. Gene-expression correlates of the oscillatory signatures supporting human episodic memory encoding. Nat. Neurosci. 24, 554–564 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mahalingam, G. et al. A scalable and modular automated pipeline for stitching of large electron microscopy datasets. eLife 11, e76534 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. et al. High-throughput mapping of long-range neuronal projection using in situ sequencing. Cell 179, 772–786.e19 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Foss-Feig, J. H. et al. Searching for cross-diagnostic convergence: neural mechanisms governing excitation and inhibition balance in schizophrenia and autism spectrum disorders. Biol. Psychiatry 81, 848–861 (2017).

    Article 

    Google Scholar
     

  • Krystal, J. H. et al. Impaired tuning of neural ensembles and the pathophysiology of schizophrenia: a translational and computational neuroscience perspective. Biol. Psychiatry 81, 874–885 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Opris, I. & Casanova, M. F. Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain 137, 1863–1875 (2014).

    Article 

    Google Scholar
     

  • Li, Q. et al. Multimodal charting of molecular and functional cell states via in situ electro-sequencing. Cell 186, 2002–2017.e21 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Billeh, Y. N. et al. Systematic integration of structural and functional data into multi-scale models of mouse primary visual cortex. Neuron 106, 388–403.e18 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Buchin, A. et al. Multi-modal characterization and simulation of human epileptic circuitry. Cell Rep. 41, 111873 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Winkler, E. A. et al. A single-cell atlas of the normal and malformed human brain vasculature. Science 375, eabi7377 (2022). This study describes an example of how an ex vivo platform can be utilized to study non-neuronal cell types in human brain and disease.

    Article 
    CAS 

    Google Scholar
     

  • Eugène, E. et al. An organotypic brain slice preparation from adult patients with temporal lobe epilepsy. J. Neurosci. Methods 235, 234–244 (2014).

    Article 

    Google Scholar
     

  • Schwarz, N. et al. Long-term adult human brain slice cultures as a model system to study human CNS circuitry and disease. eLife 8, e48417 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mich, J. K. et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep. 34, 108754 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, D. et al. Optimal trade-off control in machine learning-based library design, with application to adeno-associated virus (AAV) for gene therapy. Sci. Adv. 10, eadj3786 (2024).

    Article 

    Google Scholar
     

  • Mercuri, E., Pera, M. C., Scoto, M., Finkel, R. & Muntoni, F. Spinal muscular atrophy—insights and challenges in the treatment era. Nat. Rev. Neurol. 16, 706–715 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Neuner, S. M., Tcw, J. & Goate, A. M. Genetic architecture of Alzheimer’s disease. Neurobiol. Dis. 143, 104976 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tabrizi, S. J., Flower, M. D., Ross, C. A. & Wild, E. J. Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat. Rev. Neurol. 16, 529–546 (2020).

    Article 

    Google Scholar
     

  • Niestroj, L. M. et al. Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17 458 subjects. Brain 143, 2106–2118 (2020).

    Article 

    Google Scholar
     

  • Epi4K Consortiu. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wang, T. et al. Integrated gene analyses of de novo variants from 46,612 trios with autism and developmental disorders. Proc. Natl Acad. Sci. USA 119, e2203491119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet. 54, 1320–1331 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509–516 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, D. et al. Schizophrenia risk conferred by rare protein-truncating variants is conserved across diverse human populations. Nat. Genet. 55, 369–376 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lin, X. et al. Integrating genetic structural variations and whole-genome sequencing into clinical neurology. Neurol. Genet. 8, e200005 (2022).

    Article 

    Google Scholar
     

  • Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mitra, I. et al. Patterns of de novo tandem repeat mutations and their role in autism. Nature 589, 246–250 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nishioka, M., Bundo, M., Iwamoto, K. & Kato, T. Somatic mutations in the human brain: implications for psychiatric research. Mol. Psychiatry 24, 839–856 (2019).

    Article 

    Google Scholar
     

  • Rehen, S. K. et al. Constitutional aneuploidy in the normal human brain. J. Neurosci. 25, 2176–2180 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Comprehensive identification of somatic nucleotide variants in human brain tissue. Genome Biol. 22, 92 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Luquette, L. J. et al. Single-cell genome sequencing of human neurons identifies somatic point mutation and indel enrichment in regulatory elements. Nat. Genet. 54, 1564–1571 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chung, C. et al. Comprehensive multi-omic profiling of somatic mutations in malformations of cortical development. Nat. Genet. 55, 209–220 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Hua, Y. & Crino, P. B. Single cell lineage analysis in human focal cortical dysplasia. Cereb. Cortex 13, 693–699 (2003).

    Article 

    Google Scholar
     

  • Rivière, J. B. et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat. Genet. 44, 934–940 (2012).

    Article 

    Google Scholar
     

  • Poduri, A. et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74, 41–48 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ribierre, T. et al. Second-hit mosaic mutation in mTORC1 repressor DEPDC5 causes focal cortical dysplasia-associated epilepsy. J. Clin. Invest. 128, 2452–2458 (2018).

    Article 

    Google Scholar
     

  • Baldassari, S. et al. Dissecting the genetic basis of focal cortical dysplasia: a large cohort study. Acta Neuropathol. 138, 885–900 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wirrell, E. C. et al. Optimizing the diagnosis and management of dravet syndrome: recommendations from a North American consensus panel. Pediatr. Neurol. 68, 18–34.e3 (2017).

    Article 

    Google Scholar
     

  • Gratuze, M., Leyns, C. E. G. & Holtzman, D. M. New insights into the role of TREM2 in Alzheimer’s disease. Mol. Neurodegener. 13, 66 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ulland, T. K. & Colonna, M. TREM2—a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Braasch, D. A., Liu, Y. & Corey, D. R. Antisense inhibition of gene expression in cells by oligonucleotides incorporating locked nucleic acids: effect of mRNA target sequence and chimera design. Nucleic Acids Res. 30, 5160–5167 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Bladen, C. L. et al. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 36, 395–402 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Finkel, R. S. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388, 3017–3026 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Hampel, H. et al. The foundation and architecture of precision medicine in neurology and psychiatry. Trends Neurosci. 46, 176–198 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Knowles, J. K. et al. Precision medicine for genetic epilepsy on the horizon: recent advances, present challenges, and suggestions for continued progress. Epilepsia 63, 2461–2475 (2022).

    Article 

    Google Scholar
     

  • Varma, V. R. et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med. 15, e1002482 (2018).

    Article 

    Google Scholar
     

  • Noori, A., Mezlini, A. M., Hyman, B. T., Serrano-Pozo, A. & Das, S. Systematic review and meta-analysis of human transcriptomics reveals neuroinflammation, deficient energy metabolism, and proteostasis failure across neurodegeneration. Neurobiol. Dis. 149, 105225 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Quazi, S. Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol. 39, 120 (2022).

    Article 

    Google Scholar
     

  • Ingusci, S., Verlengia, G., Soukupova, M., Zucchini, S. & Simonato, M. Gene therapy tools for brain diseases. Front. Pharmacol. 10, 724 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, D., Schieferecke, A. J., Lopez, P. A. & Schaffer, D. V. Adeno-associated virus vector for central nervous system gene therapy. Trends Mol. Med. 27, 524–537 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sugarman, E. A. et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur. J. Hum. Genet. 20, 27–32 (2012).

    Article 

    Google Scholar
     

  • Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mendell, J. R. et al. Current clinical applications of in vivo gene therapy with AAVs. Mol. Ther. 29, 464–488 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chien, Y. H. et al. Efficacy and safety of AAV2 gene therapy in children with aromatic l-amino acid decarboxylase deficiency: an open-label, phase 1/2 trial. Lancet Child Adolesc. Health 1, 265–273 (2017).

    Article 

    Google Scholar
     

  • Leone, P. et al. Long-term follow-up after gene therapy for canavan disease. Sci. Transl. Med. 4, 165ra163 (2012).

    Article 

    Google Scholar
     

  • Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Challis, R. C. et al. Adeno-associated virus toolkit to target diverse brain cells. Annu. Rev. Neurosci. 45, 447–469 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Byrne, L. C. et al. In vivo-directed evolution of adeno-associated virus in the primate retina. JCI Insight 5, e135112 (2020).

    Article 

    Google Scholar
     

  • Hendriks, S. et al. Ethical challenges of risk, informed consent, and posttrial responsibilities in human research with neural devices: a review. JAMA Neurol. 76, 1506–1514 (2019).

    Article 

    Google Scholar
     

  • Loyola-Gonzalez, O. Black-box vs. white-box: understanding their advantages and weaknesses from a practical point of view. IEEE Access 7, 154096–154113 (2019).

    Article 

    Google Scholar
     

  • McLean, S. et al. The risks associated with artificial general intelligence: a systematic review. J. Exp. Theor. Artif. Intell. 35, 649–663 (2023).

    Article 

    Google Scholar
     

  • Feinsinger, A. et al. Ethical commitments, principles, and practices guiding intracranial neuroscientific research in humans. Neuron 110, 188–194 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kaiser, J. & Brainard, J. Ready, set, share. Science 379, 322–325 (2023).

    Article 
    ADS 

    Google Scholar
     

  • von Thenen, N., Ayday, E. & Cicek, A. E. Re-identification of individuals in genomic data-sharing beacons via allele inference. Bioinformatics 35, 365–371 (2019).

    Article 

    Google Scholar
     

  • Jansen, P. R. et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet. 51, 394–403 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Choudhury, S., Fishman, J. R., McGowan, M. L. & Juengst, E. T. Big data, open science and the brain: lessons learned from genomics. Front. Hum. Neurosci. 8, 239 (2014).

    Article 

    Google Scholar
     

  • Van Horn, J. D. & Ball, C. A. Domain-specific data sharing in neuroscience: what do we have to learn from each other. Neuroinformatics 6, 117–121 (2008).

    Article 

    Google Scholar
     

  • Ford, D. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am. J. Hum. Genet. 62, 676–689 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Maury, E. A. et al. Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions. Cell Genomics 3, 100356 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Paré, G. et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N. Engl. J. Med. 363, 1704–1714 (2010).

    Article 

    Google Scholar
     

  • Mellinghoff, I. K. et al. Vorasidenib in IDH1– or IDH2-mutant low-grade glioma. N. Engl. J. Med. 389, 589–601 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wong, C. UK first to approve CRISPR treatment for diseases: what you need to know. Nature 623, 676–677 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, A. C. et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 603, 885–892 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cain, A. et al. Multicellular communities are perturbed in the aging human brain and Alzheimer’s disease. Nat. Neurosci. 26, 1267–1280 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Speir, M. L. et al. UCSC Cell Browser: visualize your single-cell data. Bioinformatics 37, 4578–4580 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wan, Z. et al. Sociotechnical safeguards for genomic data privacy. Nat. Rev. Genet. 23, 429–445 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ngai, J. BRAIN 2.0: transforming neuroscience. Cell 185, 4–8 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Reardon, J. et al. Trustworthiness matters: building equitable and ethical science. Cell 186, 894–898 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Kowal, E. et al. Community partnerships are fundamental to ethical ancient DNA research. HGG Adv. 4, 100161 (2023).

    CAS 

    Google Scholar
     

  • Shim, J. K. et al. Community engagement in precision medicine research: organizational practices and their impacts for equity. AJOB Empir. Bioeth. 14, 185–196 (2023).

    Article 

    Google Scholar
     

  • Han, H. R. et al. Exploring community engaged research experiences and preferences: a multi-level qualitative investigation. Res. Involv. Engagem. 7, 19 (2021).

    Article 

    Google Scholar
     

  • Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Berg, J. et al. Human neocortical expansion involves glutamatergic neuron diversification. Nature 598, 151–158 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jorstad, N. L. et al. Transcriptomic cytoarchitecture reveals principles of human neocortex organization. Science 382, eadf6812 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Elston, G. N. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb. Cortex 13, 1124–1138 (2003).

    Article 

    Google Scholar
     

  • Hill, R. S. & Walsh, C. A. Molecular insights into human brain evolution. Nature 437, 64–67 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Markov, N. T. et al. Cortical high-density counterstream architectures. Science 342, 1238406 (2013).

    Article 

    Google Scholar
     

  • Nowakowski, T. J., Pollen, A. A., Sandoval-Espinosa, C. & Kriegstein, A. R. Transformation of the radial glia scaffold demarcates two stages of human cerebral cortex development. Neuron 91, 1219–1227 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Vanderhaeghen, P. & Polleux, F. Developmental mechanisms underlying the evolution of human cortical circuits. Nat. Rev. Neurosci. 24, 213–232 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Roberts, R. J. V., Pop, S. & Prieto-Godino, L. L. Evolution of central neural circuits: state of the art and perspectives. Nat. Rev. Neurosci. 23, 725–743 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kebschull, J. M. et al. Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science 370, eabd5059 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Defelipe, J. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front. Neuroanat. 5, 29 (2011).

    Article 

    Google Scholar
     



  • Source link


    administrator