• Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lu, X. B. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Science 371, 1261–1265 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cao, Y., Park, J. M., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Pauli-limit violation and re-entrant superconductivity in moiré graphene. Nature 595, 526–531 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, X., Zhang, N. J., Watanabe, K., Taniguchi, T. & Li, J. I. A. Isospin order in superconducting magic-angle twisted trilayer graphene. Nat. Phys. 18, 522–527 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538–1543 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Su, R., Kuiri, M., Watanabe, K., Taniguchi, T. & Folk, J. A. Superconductivity in twisted double bilayer graphene stabilized by WSe2. Nat. Mater. 22, 1332–1337 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Holleis, L. et al. Ising superconductivity and nematicity in Bernal bilayer graphene with strong spin orbit coupling. Preprint at https://arxiv.org/abs/2303.00742 (2023).

  • Gmitra, M. & Fabian, J. Graphene on transition-metal dichalcogenides: a platform for proximity spin-orbit physics and optospintronics. Phys. Rev. B 92, 155403 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Gmitra, M. & Fabian, J. Proximity effects in bilayer graphene on monolayer WSe2: field-effect spin valley locking, spin-orbit valve, and spin transistor. Phys. Rev. Lett. 119, 146401 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Khoo, J. Y., Morpurgo, A. F. & Levitov, L. S. On-demand spin-orbit interaction from which-layer tunability in bilayer graphene. Nano Lett. 17, 7003–7008 (2017). 11.

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Avsar, A. et al. Spin–orbit proximity effect in graphene. Nat. Commun. 5, 4875 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Origin and magnitude of ‘designer’ spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides. Phys. Rev. X 6, 041020 (2016).


    Google Scholar
     

  • Yang, B. W. et al. Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS2. 2D Mater. 3, 031012 (2016).

    Article 

    Google Scholar
     

  • Wakamura, T. et al. Strong anisotropic spin-orbit interaction induced in graphene by monolayer WS2. Phys. Rev. Lett. 120, 106802 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Quantum Hall effect measurement of spin-orbit coupling strengths in ultraclean bilayer graphene/WSe2 heterostructures. Nano Lett. 19, 7028–7034 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Island, J. O. et al. Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature 571, 85–89 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, J.-X. et al. Spin-orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Han, T. et al. Large quantum anomalous Hall effect in spin-orbit proximitized rhombohedral graphene. Science 384, 647–651 (2024).

  • Sha, Y. et al. Observation of a Chern insulator in crystalline ABCA-tetralayer graphene with spin-orbit coupling. Science 384, 414–419 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).

    Article 

    Google Scholar
     

  • Pantaleón, P. A. et al. Superconductivity and correlated phases in non-twisted bilayer and trilayer graphene. Nat. Rev. Phys. 5, 304–315 (2023).

    Article 

    Google Scholar
     

  • Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • de la Barrera, S. C. et al. Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field. Nat. Phys. 18, 771–775 (2022).

    Article 

    Google Scholar
     

  • Seiler, A. M. et al. Quantum cascade of correlated phases in trigonally warped bilayer graphene. Nature 608, 298–302 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, J. X. et al. Spontaneous momentum polarization and diodicity in Bernal bilayer graphene. Preprint at https://arxiv.org/abs/2302.04261 (2023).

  • Liu, K. et al. Spontaneous broken-symmetry insulator and metals in tetralayer rhombohedral graphene. Nat. Nanotechnol. 19, 188–195 (2023).

    Article 

    Google Scholar
     

  • Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. Nat. Nanotechnol. 19, 181–187 (2023).

    Article 

    Google Scholar
     

  • Han, T. et al. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 623, 41–47 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    CAS 

    Google Scholar
     

  • McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Saito, Y. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, 1975).

  • Chou, Y.-Z., Wu, F., Sau, J. & Sarma, S. Acoustic-phonon-mediated superconductivity in Bernal bilayer graphene. Phys. Rev. B 105, L100503 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chou, Y.-Z., Wu, F., Sau, J. D. & Das Sarma, S. Acoustic-phonon-mediated superconductivity in moiréless graphene multilayers. Phys. Rev. B 106, 024507 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chou, Y.-Z., Wu, F. & Das Sarma, S. Enhanced superconductivity through virtual tunneling in Bernal bilayer graphene coupled to WSe2. Phys. Rev. B 106, L180502 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boström, E. V. et al. Phonon-mediated unconventional s– and f-wave pairing superconductivity in rhombohedral stacked multilayer graphene. Preprint at https://arxiv.org/abs/2311.02494 (2023).

  • Jimeno-Pozo, A., Sainz-Cruz, H., Cea, T., Pantaleón, P. A. & Guinea, F. Superconductivity from electronic interactions and spin-orbit enhancement in bilayer and trilayer graphene. Phys. Rev. B 107, L161106 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wagner, G., Kwan, Y., Bultinck, N., Simon, S. & Parameswaran, S. Superconductivity from repulsive interactions in Bernal-stacked bilayer graphene. Preprint at https://arxiv.org/abs/2302.00682 (2023).

  • Li, Z. et al. Charge fluctuations, phonons, and superconductivity in multilayer graphene. Phys. Rev. B 108, 045404 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cea, T. Superconductivity induced by the intervalley Coulomb scattering in a few layers of graphene. Phys. Rev. B 107, L041111 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Szabó, A. L. & Roy, B. Competing orders and cascade of degeneracy lifting in doped Bernal bilayer graphene. Phys. Rev. B 105, L201107 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Dong, Z., Chubukov, A. V. & Levitov, L. Transformer spin-triplet superconductivity at the onset of isospin order in bilayer graphene. Phys. Rev. B 107, 174512 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dong, Z., Levitov, L. & Chubukov, A. V. Superconductivity near spin and valley orders in graphene multilayers. Phys. Rev. B 108, 134503 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Curtis, J. B. et al. Stabilizing fluctuating spin-triplet superconductivity in graphene via induced spin-orbit coupling. Phys. Rev. Lett. 130, 196001 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jung, J. & MacDonald, A. H. Accurate tight-binding models for the π bands of bilayer graphene. Phys. Rev. B 89, 035405 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Xie, M. & Sarma, S. D. Flavor symmetry breaking in spin-orbit coupled bilayer graphene. Phys. Rev. B 107, L201119 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dong, Z., Davydova, M., Ogunnaike, O. & Levitov, L. Isospin- and momentum-polarized orders in bilayer graphene. Phys. Rev. B 107, 075108 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, Y. J. et al. Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430–3434 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link