• Kernell, D. The Motoneurone and Its Muscle Fibres (Oxford Univ. Press, 2006).

  • Marshall, N. J. et al. Flexible neural control of motor units. Nat. Neurosci. 25, 1492–1504 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henneman, E., Clamann, H. P., Gillies, J. D. & Skinner, R. D. Rank order of motoneurons within a pool: law of combination. J. Neurophysiol. 37, 1338–1349 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tresch, M. C., Saltiel, P., d’Avella, A. & Bizzi, E. Coordination and localization in spinal motor systems. Brain Res. Rev. 40, 66–79 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Ting, L. H. & Macpherson, J. M. A limited set of muscle synergies for force control during a postural task. J. Neurophysiol. 93, 609–613 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Hug, F., Avrillon, S., Ibáñez, J. & Farina, D. Common synaptic input, synergies and size principle: control of spinal motor neurons for movement generation. J. Physiol. 601, 11–20 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azevedo, A. et al. Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature https://doi.org/10.1038/s41586-024-07389-x (2024).

  • Sherrington, C. S. The Integrative Action of the Nervous System (Yale Univ. Press, 1906).

  • Lobato-Rios, V. et al. NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster. Nat. Methods 19, 620–627 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azevedo, A. W. et al. A size principle for recruitment of Drosophila leg motor neurons. eLife 9, e56754 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ting, L. H. & McKay, J. L. Neuromechanics of muscle synergies for posture and movement. Curr. Opin. Neurobiol. 17, 622–628 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodson-Tole, E. F. & Wakeling, J. M. Motor unit recruitment for dynamic tasks: current understanding and future directions. J. Comp. Physiol. B 179, 57–66 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wuerker, R. B., McPhedran, A. M. & Henneman, E. Properties of motor units in a heterogeneous pale muscle (m. gastrocnemius) of the cat. J. Neurophysiol. 28, 85–99 (1965).

    Article 
    PubMed 

    Google Scholar
     

  • Mcphedran, A. M., Wuerker, R. B. & Henneman, E. Properties of motor units in a homogeneous red muscle (soleus) of the cat. J. Neurophysiol. 28, 71–84 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pallucchi, I. et al. Molecular blueprints for spinal circuit modules controlling locomotor speed in zebrafish. Nat. Neurosci. 27, 78–89 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, J. et al. Multiple rhythm-generating circuits act in tandem with pacemaker properties to control the start and speed of locomotion. Neuron 105, 1048–1061 (2020).

  • Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759–774 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meissner, G. W. et al. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. eLife 12, e80660 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuan, A. T. et al. Dense neuronal reconstruction through X-ray holographic nano-tomography. Nat. Neurosci. 23, 1637–1643 (2020).

  • Grimaldi, D. & Engel, M. S. Evolution of the Insects (Cambridge Univ. Press, 2005).

  • Dickinson, M. H. & Tu, M. S. The function of dipteran flight muscle. Comp. Biochem. Physiol. A Physiol. 116, 223–238 (1997).

    Article 

    Google Scholar
     

  • Barnes, C. L., Bonnéry, D. & Cardona, A. Synaptic counts approximate synaptic contact area in Drosophila. PLoS ONE 17, e0266064 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burrows, M. The Neurobiology of an Insect Brain (Oxford Univ. Press, 1996).

  • Monster, A. W. & Chan, H. Isometric force production by motor units of extensor digitorum communis muscle in man. J. Neurophysiol. 40, 1432–1443 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindsay, T., Sustar, A. & Dickinson, M. The function and organization of the motor system controlling flight maneuvers in flies. Curr. Biol. 27, 345–358 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melis, J. M., Siwanowicz, I. & Dickinson, M. H. Machine learning reveals the control mechanics of an insect wing hinge. Nature 628, 795–803 (2024).

  • Heide, G. & Götz, K. G. Optomotor control of course and altitude in Drosophila melanogaster is correlated with distinct activities of at least three pairs of flight steering muscles. J. Exp. Biol. 199, 1711–1726 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fayyazuddin, A. & Dickinson, M. H. Haltere afferents provide direct, electrotonic input to a steering motor neuron in the blowfly, Calliphora. J. Neurosci. 16, 5225–5232 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tu, M. S. & Dickinson, M. H. Modulation of negative work output from a steering muscle of the blowfly Calliphora vicina. J. Exp. Biol. 192, 207–224 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newland, P. L. & Kondoh, Y. Dynamics of neurons controlling movements of a locust hind leg II. Flexor tibiae motor neurons. J. Neurophysiol. 77, 1731–1746 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sasaki, K. & Burrows, M. Innervation pattern of a pool of nine excitatory motor neurons in the flexor tibiae muscle of a locust hind leg. J. Exp. Biol. 201, 1885–1893 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Balint, C. N. & Dickinson, M. H. The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina. J. Exp. Biol. 204, 4213–4226 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tu, M. S. & Dickinson, M. H. The control of wing kinematics by two steering muscles of the blowfly (Calliphora vicina). J. Comp. Physiol. A 178, 813–830 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mendell, L. M. & Henneman, E. Terminals of single Ia fibers: location, density, and distribution within a pool of 300 homonymous motoneurons. J. Neurophysiol. 34, 171–187 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Truman, J. W., Schuppe, H., Shepherd, D. & Williams, D. W. Developmental architecture of adult-specific lineages in the ventral CNS of Drosophila. Development 131, 5167–5184 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lacin, H. et al. Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS. eLife 8, e43701 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marin, E. C. et al. Systematic annotation of a complete adult male Drosophila nerve cord connectome reveals principles of functional organisation. Preprint at bioRxiv https://doi.org/10.1101/2023.06.05.543407 (2024).

  • Allen, A. M. et al. A single-cell transcriptomic atlas of the adult Drosophila ventral nerve cord. eLife 9, e54074 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gowda, S. B. M. et al. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila. Proc. Natl Acad. Sci. USA 115, E2115–E2124 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lees, K. et al. Actions of agonists, fipronil and ivermectin on the predominant in vivo splice and edit variant (RDLbd, I/V) of the Drosophila GABA receptor expressed in Xenopus laevis oocytes. PLoS ONE 9, e97468 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. W. & Wilson, R. I. Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proc. Natl Acad. Sci. USA 110, 10294–10299 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider-Mizell, C. M. et al. Cell-type-specific inhibitory circuitry from a connectomic census of mouse visual cortex. Preprint at bioRxiv https://doi.org/10.1101/2023.01.23.525290 (2024).

  • Svara, F. N., Kornfeld, J., Denk, W. & Bollmann, J. H. Volume EM reconstruction of spinal cord reveals wiring specificity in speed-related motor circuits. Cell Rep. 23, 2942–2954 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Örnung, G., Ottersen, O. P., Cullheim, S. & Ulfhake, B. Distribution of glutamate-, glycine- and GABA-immunoreactive nerve terminals on dendrites in the cat spinal motor nucleus. Exp. Brain Res. 118, 517–532 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Cheong, H. S. et al. Transforming descending input into behavior: the organization of premotor circuits in the Drosophila male adult nerve cord connectome. eLife https://doi.org/10.7554/eLife.96084.1 (2024).

  • Heide, G. Neural mechanisms of flight control in Diptera. BIONA-Rep. 2, 35–52 (1983).


    Google Scholar
     

  • O’Sullivan, A. et al. Multifunctional wing motor control of song and flight. Curr. Biol. 28, 2705–2717 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Whitehead, S. C. et al. Neuromuscular embodiment of feedback control elements in Drosophila flight. Sci. Adv. 8, eabo7461 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heide, G. Properties of a motor output system involved in the optomotor response in flies. Biol. Cybern. 20, 99–112 (1975).

    Article 

    Google Scholar
     

  • Mark, B. et al. A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS. eLife https://elifesciences.org/articles/67510 (2021).

  • Baek, M. & Mann, R. S. Lineage and birth date specify motor neuron targeting and dendritic architecture in adult Drosophila. J. Neurosci. 29, 6904–6916 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brierley, D. J., Rathore, K., VijayRaghavan, K. & Williams, D. W. Developmental origins and architecture of Drosophila leg motoneurons. J. Comp. Neurol. 520, 1629–1649 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Enriquez, J. et al. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes. Neuron 86, 955–970 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, W. et al. Post-transcriptional regulation of transcription factor codes in immature neurons drives neuronal diversity. Cell Rep. 39, 110992 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balaskas, N., Abbott, L. F., Jessell, T. M. & Ng, D. Positional strategies for connection specificity and synaptic organization in spinal sensory-motor circuits. Neuron 102, 1143–1156 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cover, T. M. & Thomas, J. A. Elements of Information Theory (John Wiley & Sons, 2012).

  • Harcombe, E. S. & Wyman, R. J. Output pattern generation by Drosophila flight motoneurons. J. Neurophysiol. 40, 1066–1077 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hürkey, S. et al. Gap junctions desynchronize a neural circuit to stabilize insect flight. Nature 618, 118–125 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Binder, M. D., Powers, R. K. & Heckman, C. J. Nonlinear input-output functions of motoneurons. Physiology 35, 31–39 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Henneman, E., Somjen, G. & Carpenter, D. O. Excitability and inhibitibility of motoneurons of different sizes. J. Neurophysiol. 28, 599–620 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maitin-Shepard, J. et al. google/neuroglancer. Zenodo https://doi.org/10.5281/zenodo.5573294 (2021).

  • Stürner, T. et al. Comparative connectomics of the descending and ascending neurons of the Drosophila nervous system: stereotypy and sexual dimorphism. Preprint at bioRxiv https://doi.org/10.1101/2024.06.04.596633 (2024).

  • Dorkenwald, S. et al. FlyWire: online community for whole-brain connectomics. Nat. Methods 19, 119–128 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorkenwald, S. et al. CAVE: Connectome annotation versioning engine. Preprint at bioRxiv https://doi.org/10.1101/2023.07.26.550598 (2023).

  • Elabbady, L. et al. Perisomatic features enable efficient and dataset wide cell-type classifications across large-scale electron microscopy volumes. Preprint at bioRxiv https://doi.org/10.1101/2022.07.20.499976 (2024).

  • Miller, A. in Biology of Drosophila Ch. 6 (ed. Demerec, M.) 420–534 (Cold Spring Harbor Laboratory Press, 2006).

  • Soler, C., Daczewska, M., Da Ponte, J. P., Dastugue, B. & Jagla, K. Coordinated development of muscles and tendons of the Drosophila leg. Development 131, 6041–6051 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • Li, F. et al. The connectome of the adult Drosophila mushroom body provides insights into function. eLife 9, e62576 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsliah, A. et al. Neuronal “parts list” and wiring diagram for a visual system. Preprint at bioRxiv https://doi.org/10.1101/2023.10.12.562119 (2024).

  • Witvliet, D. et al. Connectomes across development reveal principles of brain maturation. Nature 596, 257–261 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://doi.org/10.48550/arXiv.1802.03426 (2020).

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatasubramanian, L. et al. Stereotyped terminal axon branching of leg motor neurons mediated by IgSF proteins DIP-α and Dpr10. eLife 8, e42692 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lynn, C. W., Holmes, C. M. & Palmer, S. E. Heavy-tailed neuronal connectivity arises from Hebbian self-organization. Nat. Phys. 20, 484–491 (2024).

  • Fornito, A., Zalesky, A. & Bullmore, E. Fundamentals of Brain Network Analysis (Elsevier Science, 2016).

  • Harris, R. M., Pfeiffer, B. D., Rubin, G. M. & Truman, J. W. Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. eLife 4, e04493 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lacin, H. & Truman, J. W. Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system. eLife 5, e13399 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckstein, N. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila. Cell 187, 2574–2594 (2024).



  • Source link