• Kallin, C. & Berlinsky, J. Chiral superconductors. Rep. Prog. Phys. 79, 054502 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bernevig, B. A. & Hughes, T. L. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiao, L. et al. Chiral superconductivity in heavy-fermion metal UTe2. Nature 579, 523–527 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayes, I. M. et al. Multicomponent superconducting order parameter in UTe2. Science 373, 797–801 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schemm, E. R., Gannon, W. J., Wishne, C. M., Halperin, W. P. & Kapitulnik, A. Observation of broken time-reversal symmetry in the heavy-fermion superconductor UPt3. Science 345, 190–193 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jang, J. et al. Observation of half-height magnetization steps in Sr2RuO4. Science 331, 186–188 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, Y., Yokoyama, T., Balatsky, A. V. & Nagaosa, N. Theory of topological spin current in noncentrosymmetric superconductors. Phys. Rev. B 79, 060505 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Yip, S. Noncentrosymmetric superconductors. Annu. Rev. Condens. Matter Phys. 5, 15–33 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, X.-F. et al. Topologically nontrivial and trivial zero modes in chiral molecules. Phys. Rev. B 108, 035401 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aiello, C. D. et al. A chirality-based quantum leap. ACS Nano 16, 4989–5035 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schnyder, A. P., Ryu, S., Furusaki, A. & Ludwig, A. W. W. Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Sigrist, M. & Ueda, K. Phenomenological theory of unconventional superconductivity. Rev. Mod. Phys. 63, 239–311 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 96407 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Zang, Y. et al. Competing energy scales in topological superconducting heterostructures. Nano Lett. 21, 2758–2765 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Xiao, J., Koo, J. & Yan, B. Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 20, 638–644 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian, Z. et al. Hybrid chiral MoS2 layers for spin‐polarized charge transport and spin‐dependent electrocatalytic applications. Adv. Sci. 9, 2201063 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramires, A. Symmetry aspects of chiral superconductors. Contemp. Phys. 63, 71–86 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Alpern, H. et al. Unconventional superconductivity induced in Nb films by adsorbed chiral molecules. New J. Phys. 18, 113048 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sukenik, N. et al. Imprinting chirality on a conventional superconductor. Adv. Phys. Res. 2, 2200072 (2023).

    Article 

    Google Scholar
     

  • Nakajima, R. et al. Giant spin polarization and a pair of antiparallel spins in a chiral superconductor. Nature 613, 479–484 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, S. F., Howard, R. E., Stewart, G. R., Acrivos, J. V. & Geballe, T. H. Properties of intercalated 2H-NbSe2, 4Hb-TaS2, and 1T-TaS2. J. Chem. Phys. 62, 4411–4419 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Zong, P. A. et al. Flexible foil of hybrid TaS2/organic superlattice: fabrication and electrical properties. Small 16, 1901901 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ribak, A. et al. Chiral superconductivity in the alternate stacking compound 4Hb-TaS2. Sci. Adv. 6, eaax9480 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Navarro-Moratalla, E. et al. Enhanced superconductivity in atomically thin TaS2. Nat. Commun. 7, 11043 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Enhanced superconductivity upon weakening of charge density wave transport in 2H-TaS2 in the two-dimensional limit. Phys. Rev. B 98, 035203 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gamble, F. R. et al. Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174, 493–497 (1971).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdel-Hafiez, M. et al. Enhancement of superconductivity under pressure and the magnetic phase diagram of tantalum disulfide single crystals. Sci. Rep. 6, 31824 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Tailored Ising superconductivity in intercalated bulk NbSe2. Nat. Phys. 18, 1425–1430 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—evidence for \({d}_{{x}^{2}-{y}^{2}}\) symmetry. Rev. Mod. Phys. 67, 515–535 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Little, W. A. & Parks, R. D. Observation of quantum periodicity in the transition temperature of a superconducting cylinder. Phys. Rev. Lett. 9, 9–12 (1962).

    Article 
    ADS 

    Google Scholar
     

  • Almoalem, A. et al. The observation of π-shifts in the Little-Parks effect in 4Hb-TaS2. Nat. Commun. 15, 4623 (2024).

  • Vakaryuk, V. & Leggett, A. J. Spin polarization of half-quantum vortex in systems with equal spin pairing. Phys. Rev. Lett. 103, 057003 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, Y., Xu, X., Lee, M.-H., Chu, M.-W. & Chien, C. L. Observation of half-quantum flux in the unconventional superconductor β-Bi2Pd. Science 366, 238–241 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kvashnin, Y. et al. Coexistence of superconductivity and charge density waves in tantalum disulfide: experiment and theory. Phys. Rev. Lett. 125, 186401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Superconducting order from disorder in 2H-TaSe2−xSx. npj Quantum Mater. 2, 11 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tang, H. Z., Sun, Q. F., Liu, J. J. & Zhang, Y. T. Majorana zero modes in regular B-form single-stranded DNA proximity-coupled to an s-wave superconductor. Phys. Rev. B 99, 235427 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Q., Guo, A. M., Liu, J., Peeters, F. M. & Sun, Q. F. Topological phase transitions and Majorana zero modes in DNA double helix coupled to s-wave superconductors. New J. Phys. 23, 093047 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Geshkenbein, V. B., Larkin, A. I. & Barone, A. Vortices with half magnetic flux quanta in heavy-fermion superconductors. Phys. Rev. B 36, 235–238 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fischer, M. H., Lee, P. A. & Ruhman, J. Mechanism for π phase shifts in Little-Parks experiments: application to 4Hb–TaS2 and to 2H–TaS2 intercalated with chiral molecules. Phys. Rev. B 108, L180505 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, X., Li, Y. & Chien, C. L. Observation of odd-parity superconductivity with the Geshkenbein-Larkin-Barone composite rings. Phys. Rev. Lett. 132, 56001 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ghosh, S. K. et al. Recent progress on superconductors with time-reversal symmetry breaking. J. Phys. Condens. Matter 33, 033001 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hou, Y. et al. Ubiquitous superconducting diode effect in superconductor thin films. Phys. Rev. Lett. 131, 027001 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sundaresh, A., Väyrynen, J. I., Lyanda-Geller, Y. & Rokhinson, L. P. Diamagnetic mechanism of critical current non-reciprocity in multilayered superconductors. Nat. Commun. 14, 1628 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, N. F. Q. & Fu, L. Supercurrent diode effect and finite-momentum superconductors. Proc. Natl Acad. Sci. 119, e2119548119 (2022).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, J. X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, G. et al. Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions. Nat. Commun. 14, 6691 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carapella, G., Sabatino, P., Barone, C., Pagano, S. & Gombos, M. Current driven transition from Abrikosov-Josephson to Josephson-like vortex in mesoscopic lateral S/S′/S superconducting weak links. Sci. Rep. 6, 35694 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haupt, K. Phase Transitions in Transition Metal Dichalcogenides Studied by Femtosecond Electron Diffraction. Thesis, Stellenbosch Univ. (2013).

  • Wan, Z., Qiu, G. & Duan, X. Replication data for: Unconventional superconductivity in chiral molecule-TaS2 hybrid superlattices. Zenodo https://doi.org/10.5281/zenodo.11106945 (2024).

  • Chu, C. G. et al. Broad and colossal edge supercurrent in Dirac semimetal Cd3As2 Josephson junctions. Nat. Commun. 14, 6162 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, Y. & Bin, et al. Evidence of higher-order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states. Nat. Mater. 19, 974–979 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Díez-Mérida, J. et al. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat. Commun. 14, 2396 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link