• Peters, A., Chung, K. Y. & Chu, S. Measurement of gravitational acceleration by dropping atoms. Nature 400, 849–852 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M. & Tino, G. M. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518–521 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burrage, C., Copeland, E. J. & Hinds, E. A. Probing dark energy with atom interferometry. J. Cosmol. Astropart. Phys. 3, 042 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Hamilton, P. et al. Atom-interferometry constraints on dark energy. Science 349, 849–851 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaffe, M. et al. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass. Nat. Phys. 13, 938–942 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sabulsky, D. O. et al. Experiment to detect dark energy forces using atom interferometry. Phys. Rev. Lett. 123, 061102 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Asenbaum, P., Overstreet, C., Kim, M., Curti, J. & Kasevich, M. A. Atom-interferometric test of the equivalence principle at the 10−12 level. Phys. Rev. Lett. 125, 191101 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dickerson, S. M., Hogan, J. M., Sugarbaker, A., Johnson, D. M. S. & Kasevich, M. A. Multiaxis inertial sensing with long-time point source atom interferometry. Phys. Rev. Lett. 111, 83001 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Overstreet, C., Asenbaum, P., Curti, J., Kim, M. & Kasevich, M. A. Observation of a gravitational Aharonov-Bohm effect. Science 375, 226–229 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Panda, C. D. et al. Coherence limits in lattice atom interferometry at the one-minute scale. Nat. Phys. https://doi.org/10.1038/s41567-024-02518-9 (2024).

  • Xu, V. et al. Probing gravity by holding atoms for 20 seconds. Science 366, 745–749 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., del Aguila, R. P., Mazzoni, T., Poli, N. & Tino, G. M. Trapped-atom interferometer with ultracold Sr atoms. Phys. Rev. A 94, 043608 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Charrière, R., Cadoret, M., Zahzam, N., Bidel, Y. & Bresson, A. Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Phys. Rev. A 85, 013639 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Cladé, P. et al. A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave. Europhys. Lett. 71, 730–736 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J., Hui, L. & Khoury, J. No-go theorems for generalized chameleon field theories. Phys. Rev. Lett. 109, 241301 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Elder, B. et al. Chameleon dark energy and atom interferometry. Phys. Rev. D 94, 044051 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Tino, G. M. Testing gravity with cold atom interferometry: results and prospects. Quantum Sci. Technol. 6, 024014 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Westphal, T., Hepach, H., Pfaff, J. & Aspelmeyer, M. Measurement of gravitational coupling between millimetre-sized masses. Nature 591, 225–228 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Geiger, R., Landragin, A., Merlet, S. & Pereira Dos Santos, F. High-accuracy inertial measurements with cold-atom sensors. AVS Quantum Sci. 2, 024702 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Stray, B. et al. Quantum sensing for gravity cartography. Nature 602, 590–594 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janvier, C. et al. Compact differential gravimeter at the quantum projection-noise limit. Phys. Rev. A 105, 022801 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vovrosh, J., Dragomir, A., Stray, B. & Boddice, D. Advances in portable atom interferometry-based gravity sensing. Sensors 23, 7651 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hohensee, M. A., Estey, B., Hamilton, P., Zeilinger, A. & Müller, H. Force-free gravitational redshift: proposed gravitational Aharonov-Bohm experiment. Phys. Rev. Lett. 108, 230404 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Carney, D., Müller, H. & Taylor, J. M. Using an atom interferometer to infer gravitational entanglement generation. PRX Quantum 2, 030330 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Brax, P., van de Bruck, C., Davis, A.-C., Khoury, J. & Weltman, A. Detecting dark energy in orbit: the cosmological chameleon. Phys. Rev. D 70, 123518 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Khoury, J. & Weltman, A. Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Olive, K. A. & Pospelov, M. Environmental dependence of masses and coupling constants. Phys. Rev. D 77, 43524 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Hinterbichler, K., Khoury, J., Levy, A. & Matas, A. Symmetron cosmology. Phys. Rev. D 84, 103521 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Li, K. et al. Neutron limit on the strongly-coupled chameleon field. Phys. Rev. D 93, 062001 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Cronenberg, G. et al. A gravity of Earth measurement with a qBOUNCE experiment. In European Physical Society Conference on High Energy Physics 408 (Proceedings of Science, 2015).

  • Yin, P. et al. Experiments with levitated force sensor challenge theories of dark energy. Nat. Phys. 18, 1181–1185 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Upadhye, A. Dark energy fifth forces in torsion pendulum experiments. Phys. Rev. D 86, 102003 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Betz, J., Manley, J., Wright, E. M., Grin, D. & Singh, S. Searching for chameleon dark energy with mechanical systems. Phys. Rev. Lett. 129, 131302 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kapner, D. J. et al. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 98, 021101 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Geraci, A. A., Smullin, S. J., Weld, D. M., Chiaverini, J. & Kapitulnik, A. Improved constraints on non-Newtonian forces at 10 microns. Phys. Rev. D 78, 022002 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Tan, W. H. et al. New test of the gravitational inverse-square law at the submillimeter range with dual modulation and compensation. Phys. Rev. Lett. 116, 131101 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, Y. J. et al. Stronger limits on hypothetical Yukawa interactions in the 30–8000 nm range. Phys. Rev. Lett. 116, 221102 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tan, W. H. et al. Improvement for testing the gravitational inverse-square law at the submillimeter range. Phys. Rev, Lett. 124, 051301 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J. G., Adelberger, E. G., Cook, T. S., Fleischer, S. M. & Heckel, B. R. New test of the gravitational 1/r2 law at separations down to 52 μm. Phys. Rev. Lett. 124, 101101 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ke, J. et al. Combined test of the gravitational inverse-square law at the centimeter range. Phys. Rev. Lett. 126, 211101 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Greve, G. P., Luo, C., Wu, B. & Thompson, J. K. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 610, 472–477 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weidner, C. A. & Anderson, D. Z. Experimental demonstration of shaken-lattice interferometry. Phys. Rev. Lett. 120, 263201 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McAlpine, K. E., Gochnauer, D. & Gupta, S. Excited-band Bloch oscillations for precision atom interferometry. Phys. Rev. A 101, 023614 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andreev, V. et al. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eckel, S., Hamilton, P., Kirilov, E., Smith, H. W. & DeMille, D. Search for the electron electric dipole moment using Ω-doublet levels in PbO. Phys. Rev. A 87, 052130 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Haslinger, P. et al. Attractive force on atoms due to blackbody radiation. Nat. Phys. 14, 257–260 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gregoire, M. D., Hromada, I., Holmgren, W. F., Trubko, R. & Cronin, A. D. Measurements of the ground-state polarizabilities of Cs, Rb, and K using atom interferometry. Phys. Rev. A 92, 052513 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Scheel, S. & Buhmann, S. Y. Casimir-Polder forces on moving atoms. Phys. Rev. A 80, 042902 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hung, C. L., Zhang, X., Gemelke, N. & Chin, C. Accelerating evaporative cooling of atoms into Bose-Einstein condensation in optical traps. Phys. Rev. A 78, 011604 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Hensley, J. M., Peters, A. & Chu, S. Active low frequency vertical vibration isolation. Rev. Sci. Instrum. 70, 2735–2741 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Ultrahigh-sensitivity Bragg atom gravimeter and its application in testing Lorentz violation. Phys. Rev. Appl. 20, 14067 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Panda, C. D., Tao, M., Ceja, M., Reynoso, A. & Müller, H. Atomic gravimeter robust to environmental effects. Appl. Phys. Lett. 123, 064001 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bongs, K. et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 1, 731–739 (2019).

    Article 

    Google Scholar
     

  • Goossens, S. et al. High-resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon’s crust. J. Geophys. Res. Planets 125, e2019JE006086 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Matichard, F. et al. Advanced LIGO two-stage twelve-axis vibration isolation and positioning platform. Part 1: design and production overview. Precis. Eng. 40, 273–286 (2015).

    Article 

    Google Scholar
     

  • Hammad, F., Landry, A. & Mathieu, K. Prospects for testing the inverse-square law and gravitomagnetism using quantum interference. Int. J. Mod. Phys. D 30, 2150004 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Harber, D. M., Obrecht, J. M., McGuirk, J. M. & Cornell, E. A. Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate. Phys. Rev. A 72, 033610 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Sorrentino, F. et al. Quantum sensor for atom-surface interactions below 10 μm. Phys. Rev. A 79, 013409 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Balland, Y., Absil, L. & Pereira dos Santos, F. Quectonewton local force sensor. Preprint at https://arxiv.org/abs/2310.14717 (2023).

  • Billingsley, G., Yamamoto, H. & Zhang, L. Characterization of advanced LIGO core optics. Am. Soc. Precis. Eng. 66, 78–83 (2017).


    Google Scholar
     

  • Turnbaugh, C. et al. High-power near-concentric Fabry–Perot cavity for phase contrast electron microscopy. Rev. Sci. Instrum. 92, 053005 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolf, P. et al. From optical lattice clocks to the measurement of forces in the Casimir regime. Phys. Rev. A 75, 063608 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Panda, C. D. et al. Measuring gravitational attraction with a lattice atom interferometer. Zenodo https://doi.org/10.5281/zenodo.10995225 (2024).



  • Source link