• Lavelle, E. C. & Ward, R. W. Mucosal vaccines—fortifying the frontiers. Nat. Rev. Immunol. 22, 236–250 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wellford, S. A. & Moseman, E. A. Olfactory immunology: the missing piece in airway and CNS defence. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-023-00972-9 (2023).

  • Bienenstock, J. & McDermott, M. R. Bronchus- and nasal-associated lymphoid tissues. Immunol. Rev. 206, 22–31 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Neutra, M. R., Frey, A. & Kraehenbuhl, J. P. Epithelial M cells: gateways for mucosal infection and immunization. Cell 86, 345–348 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komban, R. J. et al. Activated Peyer’s patch B cells sample antigen directly from M cells in the subepithelial dome. Nat. Commun. 10, 2423 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiyono, H. & Fukuyama, S. NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat. Rev. Immunol. 4, 699–710 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lund, F. E. & Randall, T. D. Scent of a vaccine. Science 373, 397–399 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Randall, T. D. in Mucosal Immunology 4th edn (eds Mestecky, J. et al.) 43–61, Ch. 4 (Academic, 2015).

  • Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 40, 413–442 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biram, A. et al. BCR affinity differentially regulates colonization of the subepithelial dome and infiltration into germinal centers within Peyer’s patches. Nat. Immunol. 20, 482–492 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reboldi, A. et al. IgA production requires B cell interaction with subepithelial dendritic cells in Peyer’s patches. Science 352, aaf4822 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergqvist, P. et al. Re-utilization of germinal centers in multiple Peyer’s patches results in highly synchronized, oligoclonal, and affinity-matured gut IgA responses. Mucosal Immunol. 6, 122 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Hartwell, B. L. et al. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci. Transl. Med. 14, eabn1413 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Topol, E. J. & Iwasaki, A. Operation nasal vaccine—lightning speed to counter COVID-19. Sci. Immunol. 7, eadd9947 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mao, T. et al. Unadjuvanted intranasal spike vaccine elicits protective mucosal immunity against sarbecoviruses. Science 378, eabo2523 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C.-T. et al. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 186, 112–130 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Riel, D., Verdijk, R. & Kuiken, T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J. Pathol. 235, 277–287 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Chamanza, R. & Wright, J. A. A review of the comparative anatomy, histology, physiology and pathology of the nasal cavity of rats, mice, dogs and non-human primates. Relevance to inhalation toxicology and human health risk assessment. J. Comp. Pathol. 153, 287–314 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wellford, S. A. et al. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity https://doi.org/10.1016/j.immuni.2022.08.017 (2022).

  • Harkema, J. R., Carey, S. A. & Wagner, J. G. The nose revisited: a brief review of the comparative structure, function, and toxicologic pathology of the nasal epithelium. Toxicol. Pathol. 34, 252–269 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ualiyeva, S. et al. A nasal cell atlas reveals heterogeneity of tuft cells and their role in directing olfactory stem cell proliferation. Sci. Immunol. 9, eabq4341 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bates, J. T. Naïve CD4 T cell activation in the nasal-associated lymphoid tissue following intranasal immunization with a flagellin-based subunit vaccine. Int. J. Mol. Sci. 23, 15572 (2022).

  • Bedford, J. G. et al. Unresponsiveness to inhaled antigen is governed by conventional dendritic cells and overridden during infection by monocytes. Sci. Immunol. 5, eabb5439 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Shih, T.-A., Meffre, E., Roederer, M. & Nussenzweig, M. C. Role of BCR affinity in T cell-dependent antibody responses in vivo. Nat. Immunol. 3, 570–575 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Biram, A. et al. Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation. Immunity 55, 442–458 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stoler-Barak, L. et al. B cell dissemination patterns during the germinal center reaction revealed by whole-organ imaging. J. Exp. Med. 216, 2515–2530 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bemark, M., Pitcher, M. J., Dionisi, C. & Spencer, J. Gut-associated lymphoid tissue: a microbiota-driven hub of B cell immunity. Trends Immunol. 45, 211–223 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okada, T. et al. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3, e150 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwickert, T. A. et al. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J. Exp. Med. 208, 1243–1252 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roco, J. A. et al. Class-switch recombination occurs infrequently in germinal centers. Immunity 51, 337–350 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grenov, A., Hezroni, H., Lasman, L., Hanna, J. H. & Shulman, Z. YTHDF2 suppresses the plasmablast genetic program and promotes germinal center formation. Cell Rep. 39, 110778 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biram, A. et al. B cell diversification is uncoupled from SAP-mediated selection forces in chronic germinal centers within Peyer’s patches. Cell Rep. 30, 1910–1922 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuji, M. et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29, 261–271 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergqvist, P., Stensson, A., Lycke, N. Y. & Bemark, M. T cell-independent IgA class switch recombination is restricted to the GALT and occurs prior to manifest germinal center formation. J. Immunol. 184, 3545–3553 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bergqvist, P., Gärdby, E., Stensson, A., Bemark, M. & Lycke, N. Y. Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. J. Immunol. 177, 7772–7783 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mora, J. R. & von Andrian, U. H. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 1, 96–109 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitzpatrick, Z. et al. Venous-plexus-associated lymphoid hubs support meningeal humoral immunity. Nature 628, 612–619 (2024).

  • Underhill, G. H., Minges Wols, H. A., Fornek, J. L., Witte, P. L. & Kansas, G. S. IgG plasma cells display a unique spectrum of leukocyte adhesion and homing molecules. Blood 99, 2905–2912 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pabst, O. et al. Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine. J. Exp. Med. 199, 411–416 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, N. et al. Redundant role of chemokines CCL25/TECK and CCL28/MEC in IgA+ plasmablast recruitment to the intestinal lamina propria after rotavirus infection. J. Immunol. 176, 5749–5759 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hieshima, K. et al. CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. J. Immunol. 173, 3668–3675 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shimoda, M. et al. Isotype-specific selection of high affinity memory B cells in nasal-associated lymphoid tissue. J. Exp. Med. 194, 1597–1607 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H. et al. BCR selection and affinity maturation in Peyer’s patch germinal centres. Nature 582, 421–425 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nowosad, C. R. et al. Tunable dynamics of B cell selection in gut germinal centres. Nature 588, 321–326 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linehan, J. L. et al. Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells. Proc. Natl Acad. Sci. USA 112, 12782–12787 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. H. et al. Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature 609, 998–1004 (2022).

    Article 

    Google Scholar
     

  • Iijima, N. & Iwasaki, A. Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help. Nature 533, 552–556 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cornelis, R. & Shulman, Z. Upper airway and brain protection by plasma cells: a local affair. Immunity 55, 1972–1974 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roukens, A. H. E. et al. Prolonged activation of nasal immune cell populations and development of tissue-resident SARS-CoV-2-specific CD8 T cell responses following COVID-19. Nat. Immunol. 23, 23–32 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moseman, E. A., Blanchard, A. C., Nayak, D. & McGavern, D. B. T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Sci. Immunol. 5, eabb1817 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pizzolla, A. et al. Nasal-associated lymphoid tissues (NALTs) support the recall but not priming of influenza virus-specific cytotoxic T cells. Proc. Natl Acad. Sci. USA 114, 5225–5230 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sepahi, A. & Salinas, I. The evolution of nasal immune systems in vertebrates. Mol. Immunol. 69, 131–138 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harkema, J. R., Carey, S. A., Wagner, J. G., Dintzis, S. M. & Liggitt, D. in Comparative Anatomy and Histology (eds Treuting, P. M. & Dintzis, S. M.) 71–94, Ch. 6 (Academic, 2012).

  • Nakashima, T. & Hamashima, Y. Local Immune System of Nasal Mucosa in Inflammation Iga Distribution and Secretory Activity. Ann. Otol. Rhinol. Laryngol. 89, 140–146 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lundgren, A. et al. Plasmablasts in previously immunologically naïve COVID-19 patients express markers indicating mucosal homing and secrete antibodies cross-reacting with SARS-CoV-2 variants and other beta-coronaviruses. Clin. Exp. Immunol. 213, 173–189 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruber, C. N. et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell 183, 982–995 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cisney, E. D., Fernandez, S., Hall, S. I., Krietz, G. A. & Ulrich, R. G. Examining the role of nasopharyngeal-associated lymphoreticular tissue (NALT) in mouse responses to vaccines. J. Vis. Exp. https://doi.org/10.3791/3960 (2012).

  • Jin, J.-O. et al. Immunostimulatory agent evaluation: lymphoid tissue extraction and injection route-dependent dendritic cell activation. J. Vis. Exp. https://doi.org/10.3791/57640 (2018).

  • Stoler-Barak, L. et al. B cell class switch recombination is regulated by DYRK1A through MSH6 phosphorylation. Nat. Commun. 14, 1462 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozlovski, S. et al. ICAMs are dispensable for influenza clearance and anti-viral humoral and cellular immunity. Front. Immunol. 13, 1041552 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, W., Germain, R. N. & Gerner, M. Y. High-dimensional cell-level analysis of tissues with Ce3D multiplex volume imaging. Nat. Protoc. 14, 1708–1733 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Victora, G. D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keren-Shaul, H. et al. MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing. Nat. Protoc. 14, 1841–1862 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kohen, R. et al. UTAP: User-friendly Transcriptome Analysis Pipeline. BMC Bioinform. 20, 154 (2019).

    Article 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link