• Tobalske, B. W. Biomechanics of bird flight. J. Exp. Biol. 210, 3135–3146 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Chin, D. D., Matloff, L. Y., Stowers, A. K., Tucci, E. R. & Lentink, D. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates. J. R. Soc. Interface 14, 20170240 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, F. & Wootton, R. J. Two basic mechanisms in insect wing folding. Proc. R. Soc. Lond. B Biol. Sci. 263, 1651–1658 (1997).

    ADS 

    Google Scholar
     

  • Saito, K., Nomura, S., Yamamoto, S., Niiyama, R. & Okabe, Y. Investigation of hindwing folding in ladybird beetles by artificial elytron transplantation and microcomputed tomography. Proc. Natl Acad. Sci. USA 114, 5624–5628 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haas, F. & Beutel, R. G. Wing folding and the functional morphology of the wing base in Coleoptera. Zoology 104, 123–141 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haas, F. Evidence from folding and functional lines of wings on inter-ordinal relationships in Pterygota. Arthropod Syst. Phylogeny 64, 149–158 (2006).

    Article 

    Google Scholar
     

  • Sun, J., Ling, M., Wu, W., Bhushan, B. & Tong, J. The hydraulic mechanism of the unfolding of hind wings in Dorcus titanus platymelus (order: Coleoptera). Int. J. Mol. Sci. 15, 6009–6018 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phan, H. V. & Park, H. C. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science 370, 1214–1219 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Resh, V. H. & Cardé, R. T. Encyclopedia of Insects (Academic, 2009).

  • Chapman, R. F., Simpson, S. J. & Douglas, A. E. The Insects: Structure and Function (Cambridge Univ. Press, 2013).

  • Klowden, M. J. Physiological Systems in Insects (Academic, 2013).

  • Wootton, R. J. Functional morphology of insect wings. Annu. Rev. Entomol. 37, 113–140 (1992).

    Article 

    Google Scholar
     

  • Taylor, G. K., Carruthers, A. C., Hubel, T. Y. & Walker, S. M. in Morphing Aerospace Vehicles and Structures (ed. Valasek, J.) Ch. 2 (Wiley, 2012); https://doi.org/10.1002/9781119964032.ch2.

  • Haas, F., Gorb, S. & Blickhan, R. The function of resilin in beetle wings. Proc. R. Soc. Lond. B Biol. Sci. 267, 1375–1381 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Sato, H. et al. Deciphering the role of a coleopteran steering muscle via free flight stimulation. Curr. Biol. 25, 798–803 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stowers, A. K. & Lentink, D. Folding in and out: passive morphing in flapping wings. Bioinspir. Biomim. 10, 025001 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Linz, D. M., Hu, A. W., Sitvarin, M. I. & Tomoyasu, Y. Functional value of elytra under various stresses in the red flour beetle, Tribolium castaneum. Sci. Rep. 6, 34813 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le, T. Q. et al. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight. J. R. Soc. Interface 10, 20130312 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johansson, L. C. et al. Elytra boost lift, but reduce aerodynamic efficiency in flying beetles. J. R. Soc. Interface 9, 2745–2748 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souza, M. M. D. & Alexander, D. E. Passive aerodynamic stabilization by beetle elytra (wing covers). Physiol. Entomol. 22, 109–115 (1997).

    Article 

    Google Scholar
     

  • Farisenkov, S. E. et al. Novel flight style and light wings boost flight performance of tiny beetles. Nature 602, 96–100 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keennon, M., Klingebiel, K. & Won, H. Development of the nano hummingbird: a tailless flapping wing micro air vehicle. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 0558 (AIAA, 2012); https://doi.org/10.2514/6.2012-588.

  • Ma, K. Y., Chirarattananon, P., Fuller, S. B. & Wood, R. J. Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jafferis, N. T., Helbling, E. F., Karpelson, M. & Wood, R. J. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 570, 491–495 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature 575, 324–329 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Karásek, M., Muijres, F. T., De Wagter, C., Remes, B. D. W. & de Croon, G. C. H. E. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science 361, 1089–1094 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Nguyen, Q.-V. & Chan, W. L. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation. Bioinspir. Biomim. 14, 016015 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Phan, H. V., Aurecianus, S., Au, T. K. L., Kang, T. & Park, H. C. Towards the long-endurance flight of an insect-inspired, tailless, two-winged, flapping-wing flying robot. IEEE Robot. Autom. Lett. 5, 5059–5066 (2020).

    Article 

    Google Scholar
     

  • Tu, Z., Fei, F. & Deng, X. Untethered flight of an at-scale dual-motor hummingbird robot with bio-inspired decoupled wings. IEEE Robot. Autom. Lett. 5, 4194–4201 (2020).


    Google Scholar
     

  • Ozaki, T., Ohta, N., Jimbo, T. & Hamaguchi, K. A wireless radiofrequency-powered insect-scale flapping-wing aerial vehicle. Nat. Electron. 4, 845–852 (2021).

    Article 

    Google Scholar
     

  • Dufour, L., Owen, K., Mintchev, S. & Floreano, D. A drone with insect-inspired folding wings. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1576–1581 (IEEE, 2016); https://doi.org/10.1109/IROS.2016.7759255.

  • Vourtsis, C., Stewart, W. & Floreano, D. Robotic elytra: insect-inspired protective wings for resilient and multi-modal drones. IEEE Robot. Autom. Lett. 7, 223–230 (2022).

    Article 

    Google Scholar
     

  • Ozaki, T., Ohta, N. & Hamaguchi, K. Resonance-driven passive folding/unfolding flapping wing actuator. Appl. Sci. 10, 3771 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Frantsevich, L., Dai, Z., Wang, W. Y. & Zhang, Y. Geometry of elytra opening and closing in some beetles (Coleoptera,Polyphaga). J. Exp. Biol. 208, 3145–3158 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Melis, J. M., Siwanowicz, I. & Dickinson, M. H. Machine learning reveals the control mechanics of an insect wing hinge. Nature 628, 795–803 (2024); https://doi.org/10.1038/s41586-024-07293-4.

  • Vo-Doan, T. T., Dung, V. T. & Sato, H. A cyborg insect reveals a function of a muscle in free flight. Cyborg Bionic Syst. 2022, 9780504 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phan, H. V. & Park, H. C. Insect-inspired, tailless, hover-capable flapping-wing robots: recent progress, challenges, and future directions. Prog. Aerosp. Sci. 111, 100573 (2019).

    Article 

    Google Scholar
     

  • Farrell Helbling, E. & Wood, R. J. A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles. Appl. Mech. Rev. 70, 010801 (2018).

  • Hedrick, T. L. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir. Biomim. 3, 034001 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Phan, H. V. & Park, H. C. Wing inertia as a cause of aerodynamically uneconomical flight with high angles of attack in hovering insects. J. Exp. Biol. 221, jeb187369 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Phan, H.-V., Park, H. C. & Floreano, D. Data for: passive wing deployment and retraction in beetles and flapping microrobots. figshare https://doi.org/10.6084/m9.figshare.25703214 (2024).



  • Source link


    administrator